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Preface

Multi-stage games have long been of great interest

to me. When, as an officer in the Egyptian Air Force, I

joined the operations Research Center in Cairo, Egypt,

I was involved in computerization of the Air War Board

Game from Simulations Publication, Inc. (SPI). The ques-

tion of what is the "optimal" strategies in playing those

games had no answer for me. While at AFIT I learned that

multi-stage game theory may be used to approximate the

optimal solution. Hence, I decided to develop a multi-

stage game algorithm. The algorithm developed in this

thesis finds the game value and one of the optimal

strategies for each stage of the game using both single

stage game theory and dynamic programming.

I wish to thank Lieutenant Colonel James Bexfield,

my faculty advisor, for his assistance and sound advice

throughout this effort. In addition, thanks are extended

to my reader, Lieutenant Colonel Charles McNichols, for

his time and encouragement; and to my typist, Phyllis

:1 Reynolds, for her tireless efforts to produce a quality

product.

Finally, I wish to thank my wife, Sohair, whose

usually gentle prodding ensured the successful completion

of this research.MoaeA.Ftn
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The algorithm developed in this study finds the

solution to multi-stage simultaneous games. A dynamic

programming approach is used to solve the multi-stage game.

The main idea of the solution is to build at each stage a

matrix whose values are the payoffs obtained by playing

each of the given strategies at this stage and the optimal

strategies for the remaining stages. This payoff matrix

is then solved using a linear programming algorithm.

A tactical air war problem was selected to illus-

trate the usefulness of the algorithm. An interactive

GAME was developed for training and assisting the field

commander. Finally, it was shown how the multi-stage

algorithm can be used to compare two weapon systems by

letting each side play its optimal strategy.

F viii



A COMPUTERIZED ALGORITHM FOR SOLVING
MULTI-STAGE SIMULTANEOUS GAMES

I. Introduction

The theory of games of strategy may be described
as a mathematical theory of decision-making by par-
ticipants in a competitive environment. In a typical
problem to which the theory is applicable, each par-
ticipant can bring some influence to bear upon the
outcome of a certain event; no single participant by
himself nor chance alone can determine the outcome
completely. The theory is then concerned with the
problem of choosing an optimal course of action which
takes into account the possible actions of the par-
ticipants and the chance events [Ref 3:1].

Examples of games of strategy include poker, chess,

and military battles. Each of these games allows the

players to make use of their ingenuity in order to influ-

ence the outcome.

The problem we are dealing with is a particular

form of game theory--that for a multi-stage or an "IN-stage

game." The name reflects the fact that there are a series

of N decision points, or stages, in the conduct of a tacti-

cal campaign. The proper allocation of forces at each

stage depends upon the cumulative outcome of the preceding

stages and the length of tire left in the campaign. The

solution to a multi-stage game indicates the strategies

each side should play so as to optimize their respective

payoffs.

Others have attempted to solve multi-stage games.

We review three optimization models OPTSA (Ref 2),



Lulejian model (Ref 10), and DYGAM (Ref 6:A-1 to A-12).

OPTSA's insistence on exact optimality causes long running

times and limits the number of stages in the game. Lulejian

models use successive sweep techniques to find an optimal

solution. DYGAM uses the dynamic programming approach to

get the upper and lower bounds and enforceable strategies,

corresponding closely to the minimax and maximin strate-

gies for the game at a stage (Refs 6; 16).

There are two research objectives:

1. Develop an algorithm and computer code to solve

the simultaneous multi-stage game. This algorithm will

incorporate the best features of the available existing

models, and use new concepts that either improve the effi-

ciency of the model or increase its realism.

2. Illustrate how game theory can be used in

national defense. This includes exploring the usefulness

of game theory as a training device (Chapter IX) and as an

aid to procurement decision making (Chapter X).

The algorithm developed is based on the concept of

dynamic programming (see Appendix B). In this sense its

basic structure parallels that of the DYGAM model. A more

A" detailed comparison is not possible since only very general

documentation was available for the DYGAM model.

The remainder of this thesis will pursue the objec-

tives previously outlined. The second chapter will present

a review of single-stage game theory. This provides the

jl 2jt4!



reader with a basic understanding of the terminology of

game theory and how linear programming can be used to solve

the single-stage game. The third chapter describes the

general multi-stage game problem. The fourth chapter is

a review of the literature for the three models mentioned

above. The fifth chapter contains the general algorithm.

The author selected the tactical air war problem to illus-

trate the usefulness of the algorithm. The sixth chapter

describes the tactical air war problem. Chapter VII

describes the linear model of the tactical air war together

with the solution algorithm z.eeded to solve it. Chapter

VIII indicates how the algorithm developed in Chapter VII

was verified and validated. Chapter IX describes an appli-

cation of the linear model which may be useful in training

Air Force decision makers. Chapter X shows how the model

could potentially be used to give insight into an aircraft

procurement decision. Chapter XI describes a modification

to the linear model. Finally, Chapter XII provides conclu-

sions and recommendations for further research.

3



II. Game Theory Overview

Introduction

This chapter is designed to give the reader who has

a general operations research background a basic understand-

ing of game theory. The terminology and concepts discussed

in this chapter will be used in the development of the

algorithm used to solve the multistage game. First we

define what we mean by a payoff, then we discuss what is

meant by strategies, and a two-person zero-sum game. Next

the concepts of an optimal solution for a two-person zero-

sum game is discussed. A graphical solution technique is

explained. Finally we show how the technique of linear

programming can be used to solve two-person zero-sum games.

Game Theory

Game theory (Ref 12:339-352) deals with decisions

under uncertainty involving two or more intelligent oppo-

nents in which each opponent aspires to optimize his own

decision but at the expense of the other opponents. Typical

examples include launching advertisement campaigns for comn-

peting products and planning war tactics for opposing

armies.

In game theory, an opponent is referred to as a

player. Each player has a numb~er of choices, finite or

infinite in number, called strategies. The outcomes or

4



payoffs of a game depend on the strategies selected by each

of the players. A game with two players, where the gain of

one player equals the loss to the other, is known as a two-

person zero-sum game. In such a game it suffices to express

the outcomes in terms of the payoff to one player. A matrix

is usually used to summarize the payoffs to the player whose

strategies are given by the rows of the matrix while the

columns represent the corresponding strategies for his

opponent.

Optimal Solution of Two-Person
Zero-Sum Games

Games represent the ultimate case of lack of infor-

mation in which intelligent opponents are working in a con-

flicting environment (Ref 12:340). The result is that a

very conservative criterion is often proposed for solving

two-person zero-sum games. This is the minimax-maximin

criterion.

To accommodate the fact that each opponent is work-

ing against the other's interest, the minimax criterion

selects strategies for each player which will result in the

best of the worst possible outcomes. Since the game matrix

is usually expressed in terms of the payoff to player A

(whose strategies are represented by the rows), the cri-

terion calls for A to select the strategy which maximizes

his minimum gain, the minimum being taken over all the

strategies of player B. By the same reasoning, player B



selects his strategy which minimizes his maximum losses.

The maximum is taken over all A's strategies.

As an example, consider a two-person zero-sum game

with each player able to select one of four options (strate-

gies) at each play of the game. The entries in the payoff

matrix, Table II-1, represent player A's gain.

TABLE II-1

TWO-PERSON ZERO-SUM EXAMPLE PAYOFF TABLE

PLAYER B
1 2 3 4 Row Minimum

1 9 3 8 4 3

PLAYER 2 6 4 7 10 Maximin

A 3 8 3 5 -7 -7

4 2 3 8 6 2

Column Maximum: 9 D 8 0Mini-
max

When player A plays his first strategy, he may gain

9, 3, 8 or 4 depending on player B's selected strategy. He

* can guarantee, however, a gain of at least min{9,3,8,4}=3

regardless of B's selected strategy. Similarly,

if A plays his second strategy, he guarantees a payoff of

at least min{6,4,7,10}=4; if he plays his third strategy,

he guarantees a payoff of at least min{8,3,5,-7}=-7; and if

he plays his fourth strategy, he guarantees a payoff of at

least min{2,3,8,6}=2. Thus, the minimum values in each row

represents the minimum gain guaranteed A if he plays the

6



pure strategy associated with that row. Now player A, by

selecting his second strategy, assures himself of a payoff

of at least 4. He is maximizing his minimum gain. Player

A's selection is called the maximin strategy, and his corres-

ponding gain is called the maximin (or lower) value of the

game.

Player B, on the other hand, wants to minimize his

losses. He realizes that, if he plays his first pure

strategy (first column) he can lose no more than

max{9,6,8,2}=9, regardless of A's selections. The corres-

ponding results are thus indicated in the above matrix by

"column maximum." Player B will then select the strategy

that minimizes his maximum loss. This is given by the

second strategy and his corresponding loss is given by

min{9,4,8,101=4. Player B's selection is called the

minimax strategy and his corresponding loss is called the

minimax (or upper) value of the game.

From the conditions governing the minimax criterion,

the minimax (upper) value is greater than or equal to the

maximin (lower) value. In the case where the equality

holds (i.e., minimax value = minimin value), the correspond-

ing pure strategies are called "optimal" strategies and the

game is said to have a saddle point. The value of the game

is equal to the common value of the maximin and minimax

values.

The fact that this game possesses a saddle point

(Ref 7:305) was crucial in determining how it should be

7_



played. If the game possesses a saddle point then neither

player can take advantage of the opponent's strategy to

improve his own position. In particular, when player A

predicts or learns that player B is using his second

strategy, player A would only decrease his gain if he were

to change from his original plan of using his second

strategy. Similarly, player B would only worsen his posi-

tion if he were to change his plan. These maximin and

minimax strategies are said to be stable strategies and an

optimal solution to the game has been found.

Mixed Strategies

The above section shows that the existence of a

saddle point immediately yields the optimal pure strategies

for the game. However, some games do not have saddle points.

For example, consider the two-person zero-sum game in

Table 11-2. The minimax value (8) is greater than the

maximin value (2). Hence the game does not have a saddle

point and the pure maximin-minimax strategies are not

optimal. Now knowledge of the opponent's strategy can be

.1 used to improve a player's payoff. In this case the game

is said to be unstable.

-i The failure of the minimax-maximin (pure) strate-

gies, in general, to give an optimal solution to the game

has led to the idea of using mixed strategies (12:342).

Under this concept each player selects the strategy to play

at random according to a predetermined set of probabilities.

8



TABLE 11-2

PAYOFF TABLE WITHOUT SADDLE POINT

PLAYER B
1 2 3 4 Row Minimum

1 9 7 -3 8 -3

PLAYER 2 8 9 5 4 ( Maximin
A 3 1 2 9 7 1

4 10 8 2 5 2

Column Maximum: 10 9 9
Mini-
max

Let xl,x 2,...,xm and yly 2 ,...,y be the row and column

probabilities by which A and B, respectively, select their

strategies. Note that the xi and yi selected must satisfy

m n
E x. = I yi = 1 (2-1)
i=l 1 j=l

Sxiy.>0 for all i and j.
1 -

Suppose player A has m pure strategies available to him and

player B may select any one of n strategies. Let a..

represent the payoff to A if A selects strategy i and B

selects strategy j. Then Table 11-3 contains the full

payoff matrix.

In general, the value of the above game must satisfy

the inequality

MAXIMIN (LOWER) VALUE < VALUE OF THE GAME
< MINIMAX (UPPER) VALUE

9



TABLE 11-3

GENERAL PAYOFF MATRIX

PLAYER B
1 2 ... n

1 a1 1  a1 2  ... aln

2 a21 a 2n
PLAYER

A

n anl am2 ... a

The actual solution of the mixed strategy problem is based

on the minimax criterion given before. The only difference

is that A selects the xl,x 2 ,...,xm which maximize the small-

est expected payoff in a column, while B selects the

YIY2""'AYn which minimize the largest expected payoff

in a row. Mathematically, the minimax criterion for a mixed

strategy case is given as follows: player A selects the

Xl,x2,...,xn that

m m m
V max {min( ii ii i a 2xi...i I a inX)} (2-2)

and player B selects the ylly 2 , ...' Ym that

n n n
= mi {max( E aljyjI a 2 jyj,..., Z-a J} (2-3)

j=ljyj j 2lyj j=l mj j

These values are referred to as the maximum and the minimax

expected payoffs, respectively.

10



As in the pure strategies case, the minimax expected

payoff is always greater than or equal to maximin expected

payoff (V>V). When xlx 2,...,x n and yly 2 ..., Ym correspond

to the optimal solution, the equality holds and the result-

ing expected payoffs become equal to the value of the game.

This result follows from the minimax theorem (Ref 12:343):

suppose x*,x,...X* and Y*'Y*'''''Y* are the optimal sets

of probabilities for both players. Then, the optimal

expected value of the game is

m n
V* = E E a. X*y* = V . (2-4)

i=l j=l 1) 1 J

There are several methods of solving two-person

zero-sum games for the optimal values of x and

.''' y " The next section presents the graphical

method for solving a game where one of the two sides has

exactly two strategies available to him (i.e., a (2xn) or

(mx2) game). A general linear programming method for

solving any mxn game is presented in the last section of

this chapter.

Graphical Solution of (2xn)

and (mx2) Games

Graphical solutions are only applicable to games

in which at least one of the players has exactly two

strategies. Consider the (2xn) game in Table 11-4. Assume

that the game does not have a saddle point. Since A has



.1

TABLE 11-4

(2xn) TWO-PERSON ZERO-SUM GAME

PLAYER B

Yl Y2 Yn

PLAYER xl al1 a12 a ln

x2=lX a21 a22 .. a2n

two strategies, it follows that x2=l-x1 ; X 1>0, x2 _>0. His

expected payoffs corresponding to the pure strategies of

B are given in Table 11-5.

TABLE 11-5

A's EXPECTED PAYOFFS

B's Pure Strategy A's Expected Payoff

1 (all-a2 1 ) xl+a2 1

2 (a12-a22) x1 +a 2 2

n (a ln-a 2n) 1 +a2n

Note that A's average payoff varies linearly with x1.

According to the minimax criterion for mixed

strategy games, player A should select the value of x

which maximizes his minimum expected payoffs. This may be

done by plotting the above straight lines as a function of

x A typical example is illustrated in Figure II-I. Each

line is numbered according to the corresponding pure

12
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Fig. II-1. Graphical Solution to
(2xn) Game (Player A)

strategy for B. The lower envelope of these lines (ndi-

cated by heavy line segments) gives the minimum expected

payoff as a function of x1. The highest point on this

lower envelope (indicated by a dot) gives the maximin

expected payoff and hence the optimum value of x (=x*).

The optimal yj for B can be obtained by observing

the definition of the expected value of the game. This

is given for the above (2xn) game by

v* = y*{(all-a 2 1 )x*+a 2 1 }+yl{(a 1 2 -a 2 2 )x*+a 2 2 }

+ ... +y*{(a -a 2n)x*+a n (2-5)
n in n 1 2n

All the lines (alj-a2 j)x*+a2j that do not pass

through the maximin point must have their corresponding

y*iO. This follows since at x* any of these lines (for

13



example line 1 in Figure II-i) will yield an expected pay-

off for A greater than the maximin expected payoff, a

result which violates the minimax theorem.

Because the maximin point is determined by the

intersection of two straight lines, it follows that, except

for the yj corresponding to these two straight lines, all

other yj may be taken equal to zero. If, however, there

are more than two lines passing through the maximin point,

any two lines having opposite slopes may be selected to

determine the optimal values of yj. Each resulting solu-

tion is an alternative solution. Consequently, any weighted

average of these solutions will also yield a new optimal

solution.

The above discussion reveals that any (2xn) -game

is basically quivalent to a (2x2) game. Let yjl and yj2

be the probabilities corresponding to the "active" strate-

gies of B. Let all other yiO. Then B's expected payoffs

corresponding to A's pure strategies are given in Table

11-6.

TABLE 11-6

B's EXPECTED PAYOFFS

A's Pure Strategy B's Expected Payoff

1 (al j-alj2 )Yjlal j2

2 (a2jl-a2j2) yjl+a 2j2

14



These two lines are then plotted as a function of Yjl(see

Figure 11-2). Since B wishes to minimize his maximum

expected payoff, the minimum point of the upper envelope

of these two lines identifies y"

jl.

Fig. II-2. Graphical Solution too (2xn) Game (Player B)

Solution of (mxn) Games
y Linear Programming

Game theory bears a strong relationship to linear

programming since every finite two-person zero-sum game can

be expressed as a linear program and, conversely, every

*linear program can be represented as a game ('2-346). This

*section will explain how linear programming can be used to

find the solution to two-person zero-sum games. It is

especially useful for games with large payoff matrices.

15
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Recall (equation 2-2) that A's optimum mixed strate-

gies satisfy

m m m
max{min( Z 7 a 2x., a. x} (2-2)i~l ~ l 1i=l lnfi)

subject to the constraints
Xl+x +...+xm=l

12 m
x.>0, i=l, 2, ... ,m

Let

m m m
V min( a .x a x a (2-6)1 1 i2-iii=l inXi )

Then the problem becomes

maximize z0 =v (2-7)

subject to

m
* Z a. .x.>v, j=l,2,...,ni=l J13 -

m
E x.=l

I1

x.>0, for all i.

Note that v represents the value of the game.

The above linear programming formulation can be

simplified by dividing all (n+l) constraints by v. This

division is correct as long as v>O. If v<O, the direction

of the inequality constraints must be reversed. If v=O,

16

. . ..
_ 

...



the division is illegitimate. This point presents no spe-

cial problem since a positive constant Z can be added to

all the entries of the matrix, thus guaranteeing that the

value of the game for the "modified" matrix will be greater

than zero. After the optimal solution is obtained, the

true value of the game is determined by subtracting Z.

Thus, assuming that v>O, the constraints of the

linear programming become

xI  x2 +x
a -+a -+...+a M>1
l1 v 21 v ml v

x
x xa2  m > 1

a2- _+ a - + . + m2 v(a12 v +  22 v "(2-8)

x1 x2 Xm > 1
alin -- + a2 n - + ... + amn->1

Inv 2nv mn v

x+ x2 + -
v v v v

Let xi=xi/v, i=l,2,...,m. Since

max v = min-= min{x +x...+x }v 12 m

the problem becomes

minimize xx0  x 1+x2+...+x

sdbject to

17



a1X 1 + a 21x 2 + ... + am xm > 1

alX + a x + + a _ 112 1 22 2 m2m->

(2-9)

alnxl + a 2 nxn + ... + amnx m > 1

>0.
xlx 2 ,. . ..x m _ 10

Player B's problem is given by

n n n
min {max( E a. a2.y .Z a (2-10)
yj j=la i

1] j=l Y' "' mjm

subject to

YI+Y2 +  .+yn=l

yj.>O, j=1,2,...,n

The linear programming formulation is:

Maximize YO = Y1 + Y2 + .. + Yn

subject to

ally 1 + a 2Y2 +. aln Yn < 1
(2-11)

a 21 Y1 + a2 2Y 2 +... a2nYn < 1

amlYl1 + a m2 y 2 + a. amn Yn < 1

2' ... aYn

18



where y0 
= ' Y. = L' j=l,2,...,n

Notice that B's problem is actually the dual of

A's problem. Thus the optimal solution of one problem

automatically yields the optimal solution to the other.

Player B's problem can be solved by the regular simplex

method, while player A's problem is solved by the dual

simplex method.
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III. A Multi-Stage Simultaneous Game

In the preceding chapter we provided an overview

of a single-stage game theory. The players of a single-

stage game are only concerned with maximizing or mini-

mizing the single-stage game value. Although these single-

stage games can be played repetitively, each play is inde-

pendent of all previous plays. The multi-stage gaming

problem is more complex. The outcome of one play of the

multi-stage game may influence the resources each player

may use in a subsequent play. There are two types of

multi-stage games--sequential and simultaneous. In the

simultaneous game, both players redeploy during each stage

(neither side knows the other's deployment decision when

he makes his deployment decision); while in a sequential

game, one side deploys first and then the other side

redeploys with full knowledge of the other's decision.

Sequential games are not considered in this thesis. Next,

we formally define a multi-stage simultaneous game.

A multi-stage simultaneous game consists of the

following:

1. Two players engage in a sequence of two-person,

zero-sum games. One game corresponds to a stage in the

sequence.
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2. Both players have complete information about

all preceding stages.

3. Both players redeploy during each stage.

4. The payoffs on each stage are determined not

only by the strategies chosen by both players at this stage,

but also by the values of a set of resources or other

variables which serve to characterize the state of the

game at the beginning of the stage. A vector (xl,x2 4F... xN)I

called the state variable, is often used to represent the

state of the game at the start of each stage.

5. The strategies chosen by the players together

with the current state determine the value of the state at

the beginning of the next stage. The state transition

function is used to determine the state vector for the next

stage from the state vector for the last stage and the

players' game strategies.

6. The total payoff for the game is the sum of the

incremental payoffs on each of the stages.

7. The objective of the game is to maximize (in

the case of the Blue player) or minimize (in the case of

the Red player) the total payoff for the game.

Figure 111-1 shows the two-stage game. The result71of the first stage depends on the resources available to
both sides and the strategies they choose. The first

stage game will result in a certain payoff for Blue (which

is the negative of the Red payoff--recall the zero-sum
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concept) and the remaining resources available to both

sides. The second game payoff depends on the resources

remaining from the previous play (recall we assume no

replenishment) and the strategies both players use.
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IV. Literature Survey

In this chapter we survey three multi-stage

optimization models. These are the OPTSA (Ref 2), Lulejian

(Ref 10), and DYGAM (Ref 6:A-1 toA-12) models. These

models deal with two-person, zero-sum simultaneous multi-

stage games. OPTSA obtains the exact optimal solution but

at the expense of long computer times and a limited number

of stages (three stages). Lulejian has a weakness in the

optimization methodology and allows a limited number of

decision vectors (Ref 6:11). DYGAM uses the technique of

dynamic programming.

In addition, the author learned a great deal from

the book Games of Strategy by Melvin Dresher (Ref 3).

A discussion of a solution developed by Dresher of a multi-

stage tactical air war game will be reviewed in Chapter VI.

The Lulejian Model

The Lulejian model was developed for the Weapon

Systems Evaluation Group (WSEG) by Lulejian and Associates,

Inc. in 1973 (Ref 10).

The model employs an algorithm that finds the

appropriate game value and approximate optimal strategies

for both players for each stage of the game (i.e.,

campaign). The basic approach is to decompose the problem

24



into the solution of many one-move games. The discussion

of the algorithm appearing below was obtained from Refer-

ence 10.

The vector x= (x l ,...,xn will denote the state of

the game where m is the number of state variables ....

Let A and B be the sets of strategies available to

players 1 and 2, respectively, on each move. . . . The

incremental payoff function, the terminal payoff func-

tion, and the transition function will be called g, h,

and t, respectively. Thus, if the current state is x,

and the strategies chosen by the players are a and b,

then the incremental payoff for the move is g(x,a,b)

and the state x' at the beginning of the next move will

be x' =t(x,a,b). Finally, let VN(X) denote the game

value of an N-move game which is started at the initial

state x and played with optimal strategies by both

players.

An analytic solution of an N-move game is a function,

VN, giving the game value as a function of the initial

state. Such solutions are rare because of formidable

mathematical difficulties. For games which possess an

analytic solution the procedure is as follows:

First, the one-move game is solved:

W= min max
V1(X) beB aeA [g(x,a,b)]

Then using the one-move solution, the two-move game

is solved:
':' =rmi max

V2 (x) b a A [g(x,a,b) +Vl(t(x,a,b))]

This recursive procedure is continued, one move at a

time, until finally VN is reached
VN~x ) - mai max
VN(x) biB aA [g(x,a,b) +V l(t(x,a,b))]

25



the . . . games typically do not possess

saddle points. Thus, pure strategy solutions to the

above minimax problem do not exist. Rather than going

to mixed strategy solutions, the Lulejian model circum-
vents this difficulty by computing the game value for

one player or the other announcing his strategy choice
first. These values provide upper and lower bounds

for the simultaneous move (mixed strategy) game value.

Let Vk (x) be the game value for player 1 (the

maximizer) announcing his strategy first. Then
Vk(1) Wx= max min ]1
k acA [bcB [Pk(x 'a 'b) 

where

Pk(x,a,b) =g(x,a,b) +Vkl(t(x,a,b)).

That is, player 1 will announce that strategy which

will maximize the minimum payoff he will receive regard-

less of player 2's subsequent strategy choice. Simi-

larly, let Vk (2) (x) be the game value for player 2 (the
minimizer) announcing his strategy first. Then

Vk(2) (x)=min x [Pk(x,a,b)]](x) beB [aA k

It can be shown that for any x
Vk(1) (x (2) (x)

Vk () <Vk (x

Furthermore, if Vk(x) is the simultaneous move game

value, then

(V -1 ( (2)WVk <VkX) <k (x)
Suppose player 2 announces his strategy first.

Then, the algorithm employed in the prototype model
proceeds as follows. In the expression

Vk( 2 )(x) min max (2) Ixb)lk beB acA[g(x,a,b) + Vk-l

the function (2) which represents the value of thethe uncionVk_ 1

remaining moves in the game, is approximated by playing
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the game through to the end using strategies which

have been previously optimized. The procedure is as

follows:

1. Estimate good strategies for both players for

the game. Let (aN,bN),..., (a 1b) be the estimate.

2. Find the state path x ,...x(1) determined

by these strategies and the initial state x(N)

[The initial state is given; x(1) represents the state
of the beginning of the stage.]

3. Find the total payoff PN'

4. Optimize the strategies (a1lb1 ) on the last move,

i.e., calculate V 1(2) (xl). Let the new strategies

be (alibl).
5. Optimize the next to last move strategies

(a2,b2) by assuming the value of the last move is

approximately equal to the incremental payoff when the

optimized strategies (ai,bi) are used. (The assumption

is that the relative value of various next to the last

move strategies can be seen by playing the last move
with an optimized but fixed last move strategy.)

Let the new strategy be (aia).

6. Having found the optimized strategies

(aj11 b'_ , ., (ai,bj), optimize (ak,bk) by approxi-(ak-l'~ k-} 1

mating Vk_ 1  by the payoff obtained by playing the

remaining k-l moves using the previously optimized

strategies. Repeat until k=N.

7. Compare the new strategies ((a ,b ),

(a ,bN 1 ) ... (ai,bi)) with the old strategies. If

they are identical, then the algorithm has converged.

The game value is approximately P and the strategies

found in (6) are approximately optimal strategies for

the two players. If the strategies do not agree, go to

step (2) and repeat the process until convergence is

obtained.
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The sequence in which the strategies are optimized

from the last move (k-l) to the first move (k=N) is

actually quite arbitrary. The reverse sequence may

just as well be used or, better, the two sequences in

alternation.

OPTSA

The OPTimal Sortie Allocation model, OPTSA II,

was developed by IDA for computing the percentage of assign-

ments of general-purpose aircraft to missions by period,

for up to three periods. It is the only technique that pro-

vides an exact solution but it is very time-consuming

(Ref 2). The description below for the game solution pro-

cedure was obtained from Reference 2.

Let u(iB , ', JB' JR' kB' kR) denote the outcome

of the game in the selected measure of effectiveness

if Blue chooses action ', JB' kB on moves 1,2,3, and

Red chooses action iR ,R' kR on moves 1,2,3 where

i= ; kB=,...,K and i -
...IR; JRI, B...'JBR and kR-,...,K B

Let v(iB, iR JB' JR ) denote the expected value of

the selected measure of effectiveness if Blue chooses

action iB JB on moves 1,2, and Red chooses action

i RJR on moves 1,2 and then both play optimally on

move 3.

Let w(iB, iR) denote the expected value of the
selected measure of effectiveness if Blue chooses

action B on move 1 and Red chooses action iR on move 1

and then both play optimally on moves 2 and 3.

Let V denote the expected value of the game with

optimal plays by both Red and Blue on all three moves.
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The value v(iB, 'R' JB' JR)is the expected value of

a mixed strategy on the third move. The probabilities

can be denoted by

p 3(iB' iR' JB' JR' kB), all iB, iR' JB' JR' kB

q3 (iB' iR' JB' JR' kR), all 'B' iR' JB' JR' kR.

The value w(iB , iR) is the expected value of a mixed

strategy on the second move. The probabilities can

be denoted by

p 2(iB, iR' B) , all iB' 'R, JB

q2 (iB, iR, jR ) , all iB' iR' JR"

The value V is the expected value of a mixed

strategy on the first move. The probabilities can be

denoted by

1 (i B, all i B

q (iR), all i R .

For each combination of values iB, 'R' JB' JR'
the value of the outcome u(iB, iRI JB' JR' kB' kR) is

computed for kB =1,...,K B and k R = I , . . . , K  Then the

game consisting of these values is solved to obtain a

value v(iB , 'R , JB' JR) and associated optimal third

move mixed strategies p 3(iB, R , JB' JR' kB)'

,...,K B and q 3(iB, iR' JB' JR' kR), kR=l'..,KR"

For each iB , iR the game consisting of values
v(iB' iR' JB' JR)is solved to obtain a value w(iB , iR)

and an associated optimal second-move mixed strategies
p2 (iB' iR' JB) ' JR = I''JB and p2 (B iR' jR),

jR= 1, 'JR
Finally the game consisting of values w(iB, iR)

is solved to obtain V and associated optimal first-move *
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T1 1

mixed strategy p (iB) , iB 
1 .,B and pl(iR) ,

i R =  i t. ., R '

If the game is three-move, six-action there are

at the first computation stage above 1296 6 x 6 games

with resulting values v(iB, =R1 B' J BI,...,6,

iR=,. jB--I...,6, JR= 1 ,...,6. At the second

computation stage there are 36 6 x 6 games with result-

ing values w(iB, iR) iB=l,...,6, R =1,...,6. At the

third computation stage there is one 6x6 game with

resulting value V.

For each of the 1296 games there is a mixed

strategy for Blue and Red, consisting of six probabili-

ties. For each of the 36 games there is a mixed strategy.

For the one game there is a mixed strategy. Thus there

are 1296+ 36+1 = 1333 games, each with a value and a

mixed strategy for Blue and Red.

For input to each of the 1296 games there must be

computed 36 evaluations of . . . [outcomes]. Therefore

46,656 evaluations . . . are necessary.

If there were 10 actions at each move, there would

be 100 states after move 1, 100x 100 =10,000 states

after move 2, and 10,000x 100 =1,000,000 states after

move 3. Thus roughly 22 times as much computation is

required to obtain the outcomes. The number of games

is 10,000+100+1=I0,101, or roughly 8 times as many

games to solve (10 x 10 games rather than 6 x6 games).

As an example, consider a 2x 2 game with the

payoff matrix for the Blue force shown in Table IV-I.

b represents the amount of a resource available to blue

at the start of the stage. The state transition function

describing how the strategies affect the amount of b avail-

able at the next stage is contained in Table IV-2.
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TABLE IV-1

PAYOFF M4ATRIX

RED

1 2

1 5(b) 3 (b)
BLUE

2 2(b) 4(b)

TABLE IV-2

2x2 STATE TRANSITION MATRIX

RED

1 2

1 .4(b) .2(b)
BLUE

2 .5(b) .3(b)

Suppose the game begins with b=l. Thus, if both sides

play strategy 1 on their first play, then blue receives a

payoff of 5 and the value of b entering the next stage is

.4. if again both sides select strategy 1, then blue

receives an additional payoff 5(.4) or 2 for a total payoff

to date of 5+2 or 7. The value of b entering the last

(third) stage is (.4)(A4) or .16. If both sides again

select strategy 1, then blue receives an additional payoff

of .16(5) or .8. The game is over and the total payoff

achieved by blue is 7.8.

31



Step 1. To solve this game using OPTSA we first

create a table containing the total payoff values for all

64 different strategy options. A partial listing of this

Table is given as Table IV-3.

TABLE IV-3

TOTAL GAME PAYOFF VALUES FOR DIFFERENT STRATEGY
SELECTIONS IN 2x2 GAME

First Stage Second Stage Third Stage Total
i i BR JB JR kB  kR Payoff

1 1 1 1 1 1 7.8

1 1 1 1 1 2 7.48

1 1 1 1 2 1 7.32
1 1 1 1 2 2 7.64

1 1 1 2 1 1 6.6

1 1 1 2 1 2 6.44

1 1 1 2 2 1 6.36

1 1 1 2 2 2 6.52
*'

2 2 2 2 2 2 5.56

Step 2. Second, a table containing the values of

V(iB 'R' JB' J is created. Recall that V(iB, iR' JB' V

is the expected payoff if Blue chooses B' JB on moves 1,2

and Red chooses iR' JR on moves 1,2 and then both play

optimally on move 3. There will be 16 entries in this

table. Each one is found by solving a 2x2 game. For

example, to obtain V(1,1,1,1) we solve the 2x2 game (shown
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in Table IV-4) where the individual payoffs are obtained

from Table IV-3.

TABLE IV-4

2x2 GAME FOR V(1,1,1,1)

KB KR 1 2

1 7.8 7.48

2 7.32 7.64

The total payoff for this game is 7.56 (solution technique

discussed in Chapter II). A partial listing of the table

for V(iB , iR' JB' JR appears in Table IV-5.

TABLE IV-5

VALUES OF V(iB, iR' JB' JR ) FOR 2x2 GAME

First Stage Second Stage
i i V

iB B JR V(iB'iR,JB'JR)

1 1 1 1 7.56

1 1 1 2 6.48

1 1 2 1 6.50

1 1 2 2 7.02

1 2 1 1 5.28

2 2 2 2 5.51
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Step 3. Third, a table is constructed containing

the values of WiB, iR), the expected total payoff when

Blue chooses iB and Red chooses iR on move 1 and then both

play optimally on moves 2 and 3. To find W(l,l) we must

solve the following game (Table IV-6), with individual

payoffs obtained from Table IV-5.

TABLE IV-6

2x2 GAME FOR W(l,l)

JB R 1 2
1 7.56 6.48

2 6.50 7.02

The game value and hence W(l,l) is 6.845. Table IV-7

summarizes the results.

TABLE IV-7

W(iB, iR) FOR 2x2 GAME

First Stage

iB iR W( iB, iR)

1 1 6.845

1 2 3.922

2 1 4.306
2 2 5.383
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Step 4. Finally we obtain the optimal expected

payoff for the game by solving the following game (Table

IV-8) with payoff entries obtained from Table IV-7.

TABLE IV-8

2x2 GAME FOR OPTIMAL SOLUTION

1 R
i R 1 2

1 6.845 3.922

2 4.306 5.383

The optimal game value is 4.990. The correspond-

ing (perhaps mixed) strategies can be found by considering

the individual game solutions that contributed to the final

payoff. Note that 16+4+1 or 21 (2x2) games were solved

in the OPSTA solution procedure.

DYGAM

DYGAM (DYnamic GAMes solver) was developed at

Control Analysis Corporation to solve general multi-stage

games. The game solution procedure is as follows

(Ref 6).

Let W=(W.i) represent a N-dimensional vector of

state variables which completely characterizes the

status of the game at the beginning of any step. Assume

that there exists a known payoff function p(T+l) (W)

which gives the reward to the Blue side if the game

ends (at the end of the Tth stage) in state W. Also
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assume that the payoff to the Red side is -p (T+I)(W),

so that the game is zero-sum. Define p(1)(W) to be

the optimal payoff (if both sides make their best moves)

to Blue if the initial state is equal to W at the end

of the game. Thus, _p(1) (W) will be the optimal payoff

to Red. The problem is to compute p(l) (W) for any

initial deployment, W, and in this way evaluate alterna-

tive initial deployments.

Rather than directly computing the optimal payoff

p(1)(W), the dynamic programming approach first com-

putes the intermediate payoffs p(t) (W), for t=T, T-l,

T-2, etc. Here, p(t)(W) has the interpretation of

being the optimal payoff to Blue when starting from

state W at the beginning of the tth period. The method

begins by determining the best strategies during the

last or Tth stage. For example, suppose that the state

of the game was W at the beginning of the Tth stage.

Then only a one-stage problem need be solved to deter-

mine the value p(T) (W) of the game. If a simultane-

ous game is being played (both sides redeploy during

each stage), then a single stage game must be solved,

perhaps by linear programming. . . . Unfortunately,

it will be necessary in general to determine or esti-

mate p (T) (W) for all possible states W. The next step

is to determine the strategies during the second to

last stage (stage T-l). Again, only a one-stage problem
(T-1)*, need be solved to determine the value p (W); here,p(T) (.) is used to compute the relative value of states

at the beginning of the Tth period. This process is
repeated until the first stage is reached, where the

function plt) (* is computed from the function p(t+l)

for t=l,...,T by solving a single stage optimization

problem (a single stage game for simultaneous games.

36



o . Note that the optimization proceeds backwards

in time, starting from p (T+l) (-) and ending with
p (l) (_)

In dynamic programming it is generally necessary
to determine (or estimate) p t(W), t=lj ...,T, for all
possible states W. Rather than determining these pay-

off functions exactly, the approach taken is to use a

polynomial with sufficient degree to represent this
function. According to the Polynomial Approximation

Theorem, there exists a polynomial function which can

approximate any continuous function over a compact
set within any specified accuracy. Basically, there

are two~ approaches for fitting a polynomial to a func-

tion. One is to use a single polynomial with high

degree to approximate the payoff function over the

entire state space . . . . The second method is to sub-
divide the original space into smaller regions and then

use a separate polynomial of lower order to approximate

the payoff function over each region; this latter

approach is called subregional approximation and is

used by DYGAM.
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V. The Algorithm

Introduction

The purpose of this chapter is to carefully

develop a general algorithm which can be used to solve

multi-stage two-person zero-sum sumultaneous games. The

basic approach to solve the game is to decompose the

multi-stage game into the solution of many one-stage games.

The main idea is to build at each stage a matrix whose

values are the payoffs obtained by playing each of the

given strategies at this stage and the optimal strategies

for the remaining stages. A dynamic programming (back-

ward approach) is used to determine the payoff obtained

by using the optimal strategies for the remaining stages.

The Algorithm

In order to facilitate the discussion of the solu-

tion technique, some notation will be necessary.

Let B and R be the number of strategies available

to the Blue and Red players, respectively, at each stage.

It is convenient to count stages from the end of the

campaign to the beginning. Thus ISTAG -1 will represent

the last stage, the final battle and ISTAG =MSTAGE will

represent the beginning of the battle, where MSTAGE is the

* total number of stages.
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The vector T(ISTAG) - (x 1,x 2 f ... ,xN) will denote

one possible state of the game at stage ISTAG where N is

the nunber of state variables. For example, if the state

of the game at a stage is characterized by the ratio of

forces (x1) , then N=l and I(ISTAG) = (x1).

Assume that there exist known payoff matrices with

elements TT(VIISTAG) ,J,K) and -TT(I STAG),J,K) which gives

the reward (payoff) to the Blue side and the Red side,

respectively, if Blue played his Jth strategy and Red

played his Kth strategy at the stage ISTAG with entering

ISTAGstate vector I S  . Assume too that there exist a known

state transition function

I(ISTAG-I ) = F(I(ISTAG),J,K)

which gives the value of the state vector I(ISTAG-l) at the

beginning of the previous stage from the state vector for

*i this stage and the players' strategies at this stage.

Define Y(ISTAG) to be the optimal payoff to

Blue if both sides make their best moves from ISTAG until

the final battle when the state vector equals IISTAG at

ISTAG. The problem is to compute Y(I (MTAGE) for any

initial state, I MSTAGE  , and total number of stages

MSTAGE. For example, consider a five-stage game with an

initial Blue force of BLUF= 150 and Red force of

REDF =100. Again assume a state vector consisting of a

single variable, namely the force ratio. Then it is
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required to compute Y(I(5 ), where 1 = (x I ) =150/100 =1.5.

Rather than directly computing the optimal payoff

Y(I (MSTAGE)), the dynamic programming approach first com-

putes the intermediate payoffs Y(ISTAG)) for ISTAG =

1, 2, ... MSTAGE-1 and for each I(ISTAG). The method

begins by determining the optimal strategies during stage 1

for all possible values of the state variable I(ISTAG)

(Figure V-l). For example, suppose that the game was at

state I ( 1 ) at the beginning of stage 1. Then only the

one-stage problem with payoff matrix TT(I M) containing

elements TT(I(1) ,J, K), J= 1,...B,K=,...R, need be

solved to determine the value Y(I (I )). For the simultane-

ous game (both sides redeploy during each stage) a single-

stage problem can be solved by linear programming (see

Chapter II). The game value of this matrix will be Y(I .

As mentioned earlier, in theory it will be necessary to

al(osil1tae) (1)determine Y(I ( ) for all possible states I (e.g., for

all possible force ratios that could enter the final state).

If I(l) is very large, then this can be a very time-

consuming task. Later in this chapter an approximation

technique is discussed which lessens this computational

burden.

The algorithm progresses through the following

steps (Figure V-2):

1. For each possible state vector I(2) at the

beginning of the second stage and strategy pairs J and K
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for Blue and Red, respectively, use the state transition

function to calculate the values in the entering state

vector IM for the first stage.
2. The optimal game value Y(I (I ) ) for the state

vector entering the first stage has already been computed.

This value is added to the payoff value, TT(I (2 ) ,J,K) for

the second stage. This sum (A(I(2 ,J,K)) is the payoff to

Blue if Blue uses strategy J, Red uses strategy K at the

next to last stage (ISTAG -2) and then both use their

otpimal strategies at the last stage (ISTAG=l).

3. Let A(l (2 ) ) be the payoff matrix obtained when

the state vector is I (2) at ISTAG= 2, then this one-stage

game can be solved to provide the optimal solution for the

two-stage game. The solution to the two-stage game is

denoted by Y(I
(2)

4. Repeat until ISTAG =MSTAG.

In dynamic programming, it is generally necessary

to determine Y(I (ISTAG)), ISTAG=I, 2, ..., MSTAGE, for

ISTAGall possible states II  . Rather than determining the

game values for all possible states, the approach taken is

to use a suitable number of grid points selected at a suit-

able distance over the output state space of any stage.

For example, if the possible force ratios are between .1

and 10, the grid points can be selected so the values of

the state vector I(ISTAG) considered are {.l, .2, .4,

.7, 1, 1.5, 2, 4, 6, 8, 10}. A cubic spline interpolation
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(Appendix A) is then used to estimate the payoffs for

force ratios between the selected grid points.

-41

44 ,



VI. Tactical Air Application

Introduction

The remainder of this thesis will be concerned

with the application of the methodology developed in

Chapter V to tactical air warfare problems. This chapter

contains a discussion of the missions in tactical air war-

fare and indicates the major assumptions necessary to

formulate the problem as a multi-stage two-person zero-

sum game.

The Problem

The problem of optimal employment of a tactical

air force in various theater air missions can be analyzed

as a multi-stage game between two sides. Tactical air

forces may be used on many missions, such as the follow-

ing:

Air Base Attack. These operations are against

the enemy's theater air base complex and organization

with the purpose of destroying his aircraft, personnel,

facilities, and so on.

Air Defense. These represent air-defense opera-

tions against the enemy's air base attack operations.

Close Air Support. The targets for close air

support operations are concentrations of enemy troops or
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fortified positions close to the FEBA. They are attacked

in order to help the ground forces in the battle area.

Interdiction. These operations reduce the enemy's

military potential by attacking his transportation facili-

ties.

Reconnaissance. The most important function of

these operations is to obtain information about enemy

targets.

By setting three categories--attack, defense, and

support--it is apparent that each of the five tasks just

mentioned can be placed into one or more of these three

categories (Ref 11:233). For example, counter air would

go into the attack category. Air defense would be placed

under defense, and close air support under the support

category. Both reconnaissance and interdiction could

go into the categories of attack and support. Thus the

problem of tactical air war becomes the problem of employ-

ing the tactical air force in the three missions of attack,

defense, and support for each stage of the war.

Assumptions

Since the ultimate objective is to win the ground

battle, we will assume each player's objective for the game

is to maximize the difference between his close air sup-

port and his opponent's close air support for the entire

campaign. The players make allocation decisions between
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airborne attack, air defense and close air support each

day; these determine the outcome of the day's encounter.

The decision is not easy. Large allocations to air base

attack early in the campaign may result in substantially

degrading the enemy's ability to conduct close air support

later in the campaign. The next day a new game is played.

The sequential total game for the entire campaign is

referred to as N-stage game, where N is the number of time

periods (days) represented in the campaign.

Additional assumptions of the model include:

1. Initial friendly and enemy force size and char-

acteristics are fixed and the campaign progresses to comple-

tion without force replenishment by either side.

2. The campaign consists of "simultaneous" stages.

Redeployment of aircraft is made by both sides at each

stage. Each side knows both his strength and the strength

of the opposing force. However, neither side knows the

other's deployment.

3. Aircraft are assumed to be homogeneous and of

multiple capability. Thus any available aircraft may be

assigned to a counter air mission, air defense mission

or close air support mission.

4. Attacks on air bases are limited to destruc-

tion of aircraft caught on the ground. No benefit is

*assumed to occur from these attacks on the installation,

POL, personnel, etc. Initially it is assumed all of the
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opposing player's aircraft are on the ground at the time

of attack.

5. Aircraft engaging in close air support cannot

be destroyed when accomplishing their missions. Thus

there is no attrition due to ground forces (AAA, SAMS)

or air defenses at the battle field.

6. Air defense aircraft are assumed to cause a

portion of the attacking force to jettison ordnance and

return to base. Initially it is assumed that the air

defense aircraft do not destroy the enemy attackers.

Later, in the binomial model, this assumption is relaxed.

Summary

In this chapter the tactical air war tasks were

compressed into three missions--attack, defense and close

air support. In addition, it was shown how the tactical

air war game could be formulated as a multi-stage, two-

person zero-sum simultaneous game. In the next chapter

a linear model is developed to solve the game. For the

linear model, all aircraft attrition is the result of an

air base attack on the other side. In Chapter IX a

binomial model is developed which allows for both air-to-

air attrition and ground attrition.
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VII. Formulation and Solution of

the Linear Model

Introduction

In this chapter we assume that aircraft aittrition

can only occur due to aircraft assigned to the air base

attack mission destroying aircraft at the air base. Each

aircraft attacking the base is assumed to destroy a fixed

number of aircraft on the ground. Each aircraft assigned

to air defense causes a fixed number of air base attackers

to abort their mission and return to their home base.

Thus the number of air base attack aircraft that abort

their mission is a linear function of the number of air

defense aircraft. Hence the name linear model.

The first section of this chapter provides a

detailed formulation of the linear model. The next section

provides the linear model solution. This section is

divided into subsections dealing with the problem of an

infinite number of stages, then one stage equations for

the linear model, and the dynamic programming approach

used to solve the problem. Finally, a technique that

allows the algorithm to obtain an approximate solution

when the state variable is continuous is discussed.
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Formulation of the Linear Model

The linear model requires each player to allocate

all available aircraft to each of the three missions--

air base attack, air defense, and close air support--for

each stage of the game. Let BLUF(ISTAG) be the number of

Blue aircraft at the beginning of stage ISTAG, and

REDF(ISTAG) be the number of Red aircraft at the beginning

of ISTAG stage. These are the state variables in the model.

The decision variables are: ABAB(ISTAG) is the number of

Blue aircraft sent on air base attack during stage ISTAG;

ADB(ISTAG) is the number of Blue aircraft sent on air

defense operations; ABAR(ISTAG) is the number of Red air-

craft sent on air base attacks; and ADR(ISTAG) is the

number of Red aircraft sent on air defense operations.

The remaining number of Blue aircraft,

CASB (ISTAG) = BLUF(ISTAG) _ ABAB (ISTAG) _ ADB (ISTAG)

(7-1)

is the number sent on close air support operations; and the

remaining number of Red planes,

CASR(ISTAG) = RDF(ISTAG) _ AR(ISTAG) _ ADR(ISTAG)

(7-2)

is the number sent in close air support operations by

Red. This is a simultaneous game, as both Red and Blue

allocate their available aircraft to the various missions

during every stage of the campaign.
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Assume that each Red defender is able to engage

on the average with RAD Blue attackers and force them to

jettison their load and abort the mission. So the number

of Blue aircraft which can complete the air base attack

mission will be the

max(0,ABB(ISTAG) - Rf * ADR(ISTAG))

Assume that the fraction of Red aircraft not caught on

the ground is FRNC, and that each Blue attacker can

destroy on the average BABA Red aircraft caught on the

ground. Then the inventory of Red aircraft at the begin-

ning of the next stage is
1

REDF(ISTAG-1) = max[REDF(ISTAG) x FRNC, REDF(ISTAG)

- BABAx max (0,ABAB(ISTAG) RAD x ADR(ISTAG)];

(7-3)

and the inventory of Blue aircraft at the beginning of the

stage ISTAG-l is

BLUF (ISTAG-I) = max [BLUF (ISTAG) x FBNC, BLUF (ISTAG)
I-

- RABAxmax(O,ABAR(ISTAG) _ BAD x ADB(ISTAG)

(7-4)

where FBNC is the fraction of Blue aircraft not caught on

the ground, RABA is the expected number of Blue aircraft

1Recall that stages are counted from the final
battle to the first battle. Hence ISTAG-I is later in
time than ISTAG.
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destroyed on the ground by a Red attacker that success-

fully attacks the base, and RAD is the expected number of

Red attacker forced by one Blue defender to abort their

mission.

The payoff to Blue for an entire campaign of

MSTAGE stages is given by

MSTTAGE (IS TAG)
M SE [BCAS x CASB(ISTAG -RCAS x CASR

I STAG=1 (7-5)

'where BCAS, RCAS are the Blue and Red aircraft close air

support capabilities, respectively. Thus, the problem

that the Blue decision maker (Red decision maker) faces

is to determine the aircraft allocation for each stage so

as to maximize (minimize) Equation (7-5) subject to

Equations (7-1), (7-2), (7-3), and (7-4).

Linear Model Solution

The Problem of an Infinite Number of Stages. The

game formulated in the preceding section is a continuous

game. That is, the force allocation ratios, ABAB(ISTAG)/

BLUF (ISTAG) ADB (ISTAG) /BLUF (ISTAG , ABAR (ISTAG) /REDF (ISTAG)
BLUFAG LLJF AG)

and ADR(ISTAG) /REDF(ISTAG) may be chosen to be any real

)number within the interval from zero to one. Thus there

are an infinite number of possible allocations for each

stage. In the algorithm developed in Chapter V, on the

other hand, it is assumed that there are only a finite
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number of possible strategies at each stage. Thus it was

necessary to limit the strategy options in the following

way: the ratios (fractions) ABAISTAG)/BLUF(ISTAG)

ADB (ISTAG) / BLUF (ISTAG) ABAR(ISTAG) /REDF(ISTAG) and

ADR(ISTAG) /REDF(ISTAG) must be non-negative integer

multiples of 1/M where M is a positive integer greater

than one. For example, if M=3, then ABAB(ISTAG) would be

either O,BLUF(ISTAG) /3, 2 BLUF (ISTAG) /3, or BLUF(ISTAG).

With this notation, the total number of strategies that

each side has during each stage is given by the possible

number of ways M balls can be allocated to three boxes.
This is (M3-l (M+2)2(M+l). In the test runs, M=3 and

M=5 were used.

Let s(J,L) represent the fraction of the Blue

force allocated in CAS (L=1), ABA (L=2), and AD (L=3) for

all available blue strategies J, (J=l, (M+2) (M+l)) Let2

s(K,L), L=1,2,3, represent the ratio of the Red force allo-

cated in CAS, ABA, AD respectively for all available Red

strategies K, (K=l, (M+2)(M-l) For example, if M=3 bothS 2•

the matrices s(J,L), s(K,L) will be as shown in Table

VII-l.

One Stage Equations of the Linear Model. Given for

any engagement between Blue and Red with force sizes

BLUF(ISTAG) REDF(ISTAG) where the Blue has a fraction

s(J,l) of his force assigned to the close air support,
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TABLE VII-1

STRATEGIES AVAILABLE FORCE ALLOCATION AT M=3

ST'AT1 1 2 3 4 5 6 7 8 9 10

CAS 3/3 2/3 2/3 1/3 1/3 1/3 0 0 0 0

ABA 0 1/3 0 2/3 1/3 0 3/3 2/3 1/3 0

AD 0 0 1/3 0 1/3 2/3 0 1/3 2/3 3/3

the fraction s(J,2) assigned to air base attack and the

fraction s(J,3) assigned to air defense where

3
Z s(J,L) =1, s(J,L) > 0, L=1,2,3.

L=I

The Red has a fraction s(K,1), s(K,2) and s(K,3) assigned

to close air support, air base attack and air defense

respectively. The payoff for a single stage of the game

with Blue playing his Jth strategy and Red playing his Kth

strategy will be

(I STAG))
PAYOFF (SA)=BCAS xBLUF (ISTAG) x s(J,lI)

- RCAS xREDF(ISTAG) x s(K,l

= REDF ( I S TA G ) [BCAS x BLUF (ISTAG) x s(J,)
REDF ( STAG}

- RCASx s(K,l)] (7-6)
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Equations (7-3) and (7-4) for the force size of Blue and

Red at the beginning of stage ISTAG-I can be re-expressed

as

BLUF' max(BLUF(ISTAG) x FBNC, BLUF(ISTAG)

- RABAx max[O,REDF(ISTAG) x s(K, 2)

- BADxBLUF ( I S T A G x s(J,3)]) (7-7)

REDF (ISTAG-) = max(REDF (ISTAG) x FRNC, REDF (ISTAG)

- BABAxmax[O,BLUF(ISTAG) x s(J,2)

- RADx REDF ( I S T A G ) x s(K,3)]) (7-8)

We can use BLUF(ISTAG) and REDF(ISTAG) as state

variables and find all possible values of these variables

at each stage by using the payoff function given in

Equation (7-6) and the transition functions given in

Equations (7-7) and (7-8).

But this procedure can be simplified. First let

BI(ISTAG) be the ratio of the Blue and Red forces at

stage ISTAG. Then

BI (ISTAG) - BLUF (ISTAG)
REDF (ISTAG)

Hence the state variables REDF (I S TA G  and BI (IS TA G ) con-

tain the same information as the original state variables

REDF (ISTAG) and BLUF (ISTAG)
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Second, define RR (ISTAG) as the ratio of succes-

sive Red force sizes.

RR (ISTAG) REDF (ISTAG-1)

REDF (ISTAG)

Clearly, RR (ISTAG), BI (ISTAG) and REDF (ISTAG) contain all

the information in the original state variables BLUOFISTAG)

and REDF(ITG

Third, let the Red force at the beginning of the

compaign be REDF (MTAGE) , then REDF (MTAGE-1) - pEDF (MSTAGE)

x RRMTAE and in general REDF(ITG can be calculated by

REDF (ISTAG) = REDF (MTAG) x R(MSTAG). x RR(MSTAGEl1)

B(ISTAG) (ISTAG)
Now BIand RR together with

REF(MSTAGE) contain all of the information in the original

state variables BLUF (ISTAG) and REDF (ISTAG).

Finally note that Bl ITAl is a function of only

BI(ITG and the strategies chosen in stage ISTAG (Equa-

tion (7-9))

(ITG1
BI (ISTAGl1) -BLUF (ISTAGl1)] ~~REDF(ITGl

A = ~{max(BI(ITG x FBNC, BI(ITG BABA

(ISTAG)x max [0, s(K, 2) -BAD xBI x s (J,3)]

/{max (FRNC, l-BABA xmax 0, BI (ISTAG)

x s(J,2) - RADxs(K,3)1)} (7-9)
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In addition, note that RR ( I S TA G ) is a function of only

BI(ISTAG) and the strategies (Equation (7-10))

RR(ISTAG) = REDF 
( I S T A G - 1 )

REDF (ISTAG)

= max(FRNC,I-BABA x max[O, BI (ISTAG)

x s(J,2) -RADxs(K,3)]) (7-10)

Hence only BI (ISTAG) and the initial Red force, REDF (MSTAGE)

need be maintained to determine the state transition. If

the payoff function can be expressed as only a function of

BI(ISTAG) then we have reduced the two-state variable sys-

tem to an equivalent system with one state variable.

The payoff value equation (7-6) is a function of

REDF(ISTAG) and the force ratio BI (STAG). Let

T(BI(ISTAG) ,J,K) be the payoff value assuming REDF(ISTAG)

equals one and Blue plays J and Red plays K at stage

ISTAG.

T(BI (ISTAG),J,K) = BCASxBI x s (J, 1)

- RCAS x s(K,l) (7-11)

Thus the payoff with an arbitrary Red force of REDF(ISTAG)

is

PAYOFF(ISTAG) - REDF(ISTAG) x T(BI(ISTAG) ,J,K)

= REDF (MSTAGE) x RR (MSTAGE) x RR (MSTAGE
- 1)

x ... x RR(ISTAG- 1) x T (BI (ISTAG) ,J,K) (7-12)
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Thus the PAYOFF~n ) can be calculated knowing only

REDF(MSTAGE) and BI(ISTAG) for all values of ISTAG between

MSTAGE and n. For the remainder of this chapter we will

use the single state variable BI(ISTAG) This reduces

the size of the problem by the square root of the number

of force sizes that could be considered in the two-state

variable model.

In terms of the single state variable model; Blue

wants to maximize (see Equation (5-5))

M = REDF(M S TAGE) [T(BI(M S TAGE) ,J,K) + RR(MSTAGE)

[T(BI (MS TAGE - 1 ) ,J,K) +RR(MSTAGE-1)

[T(BI (MSTAGE-
2 ) J,K) + RR(MSTAGE-2)

... + RR(3)[T(BI (2,J,) + RR (2 )

[T(BI( 1 T),J,K) + ... ]] (7-13)

subject to Equations (7-9) and (7-10).

The dynamic programming approach discussed in the

next section will be used to obtain a numerical solution

for this problem.

Dynamic Programming Approach. An overview of

Adynamic programming appears in Appendix B. Dynamic pro-

gramming is a recursive algorithm that normally begins

with an analysis of the last stage.
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At the last engagement of the campaign (ISTAG=l)

the Blue wants to play a strategy J to maximin the game

value (T(BI(ISTAG),J,K)), while Red wants to select a

strategy K that will minimax the game value. Let

Y(BI(ISTAG)) denote the optimal game value for stage ISTAG

assuming REDF(ISTAG) = 1 and entering force ratio BI
(ISTAG ) .

Y(BI )) can be found using the linear programming

algorithm to solve the one-stage matrix T(BI (ISTAG))

(Ref Chapter II). By changing the value of BI(1) to scan

(theoretically) all the possible values of the force ratio,

one can get the corresponding last stage (ISTAG=l) optimal

game value Y(BI (I)) for all values of BI (1 ).

Suppose we are at the next to last stage (ISTAG=2).

Both Blue and Red know that this is not the last engagement.

Blue wants to maximize the sum of the game value for this

stage and for the next (last) stage while Red wants to

minimize them. If Blue plays his Jth strategy and Red

plays his Kth strategy, then the payoff of this stage will

be T(BI(2),J,K) multiplied by the REDF at the beginning

of this stage. As a result of playing those strategies

the new force ratio will be BI(I ) and the new Red ratio

will be RR (2) As the optimal game value of ISTAG=l is

available (Y(BI(1 ))) for each possible entering force ratio,

T,BI ( ) , then one can find the payoff from playing J and K

at ISTAG=2 and then optimally at ISTAG=l.
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In calculating Y(BI (I ) at ISTAG=l it was assumed

that the Red has a unit force but as the Red force is

reduced to the ratio as a result of playing the second

stage, then the corresponding value will be Y(BI (I ) xRR(2 ) "

The value Y(BI (I )) xRR( 2 ) + T(BI (2 ,J,K) represents the

payoff if, at the start of the next to last stage (ISTAG=2),

we have force ratio BI and REDF=I and Blue plays J, Red

plays K (which lead to a new force ratio BIM and a new

Red ratio RR(2) and then the optimal strategies are played

at the last stage.

Repeating this calculation for each combination of

J,K one can get the payoff matrix of the second stage.

Linear programming can be used to obtain the optimal game

value of this stage Y(BI(2). By varying BI(2) over its

full range of potential values we can obtain the corres-

ponding game value Y(BI (2 ) for all values of BI (2 ) .

Next we move to the next stage (ISTAG=3) and repeat the

process.

Solution Approximation. As mentioned earlier, it

is impossible to find the optimal values of the game

(Y(BI) (ISTAG))) at each stage for all possible values of

the force ratio (BI (ISTAG)) Instead, the user specifies

the force ratios at which exact solution of the game will

be calculated. These values of the force ratio are called

grid points. Then at each stage the optimal value of the
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game Y(BI) (ISTAG) is calculated for each grid point and

a cubic spline interpolation is used to estimate the

optimal game value for all force ratios that do not

exactly match a grid point (see Appendix A).
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VIII. Verification and Validation

In the development of a computerized model, two

of the most important stages the builder must accomplish

are verification and validation. Without them the model

formulations, preparation, and translation into an accept-

able computer language are meaningless. This chapter will

present the procedures used to verify and validate the

linear model.

Differentiation between verification and valida-

tion is difficult since they are not independent processes.

However, verification is generally viewed as insuring

that the model behaves the way it was designed. Valida-

tion consists of testing the agreement between the behavior

of the model and the real system (Ref 11:30).

Verification Tests

The following verification tests were used to

demonstrate that there are no logical or computational

errors in the computer program (Ref 5:119). The first

test of the model was to demand that its behavior not be

obviously implausible. In the early development of the

model, the implausible results are apt to be of a gross

nature. For example, in a tactical situation, the model

may indicate a negative force ratio in the sense that one
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side has a negative number of aircraft. These errors were

quite easy to detect and rectify.

Another effective test is to attempt to check

model behavior using extreme levels of flow in the system.

Model behavior is more unpredictable under normal operating

conditions. For example, in the linear model results were

observed at a force ratio = 0, when the Blue has no force
while the Red has it full force REDF ISTAG) In this

case Red should assign all of his force at all stages to

close air support. Another test was made where both sides

have the same force size with the same capability. The

expected result is a game value of zero for all the stages.

Once these obvious checks were made, attention was

directed at more representative performance. The multiple

node test considered whether or not the model would provide

different behavior when presented with different inputs.

In applying this test on the model, the Red and Blue sides

were given equivalent capabilities fixed at one (i.e.,

each Red defender prevents exactly one Blue attacker from

reaching the air base). Table VIII-i gives the optimal

game value Y(BI(ISTAG)) for ISTAG from one to ten and

BI(ISTAG) from zero to twelve. Recall that the value

Y(BI(ISTAG)) is the optimal game value at force ratio

BI(ISTAG) at stage ISTAG assuming REDF(ISTAG) = 1. To cal-

culate the actual game value we multiply Y(I(ISTAG)) by
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TABLE VIII-1

THE LINEAR ALGORITHM OPTIMAL GAME VALUE OF M=3

FR ,81 STG2 STG3 STG4 STG5 SrG6 STG7 STG8 STG9 STG10
0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00 -8.00 -9.00-10.00
.05 -.95 -1.90 -2.80 -3.65 -4.47 -5.42 -6.37 -7.33 -8.32 -9.32:
.10 -.90 -1.80 -2.60 -3.37 -4.32 -5.30 -6.29 -7.28 -8.27 -9.27
.15 -.85 -1.70 -2.40 -3.29 -4.27 -5.25 -6.24 -7.23 -8.22 -9.22
.20 -.80 -1.60 -2.30 -3.22 -4.06 -4.98 -5.96 -6.94 -7.93 -8.93
.25 -.75 -1.50 -2.22 -2.99 -3.93 -4.90 -5.89 -6.88 -7.87 -8.86

*.30 -.70 -1.40 -2.10 -2.91 -3.86 -4.82 -5.81 -6.80 -7.79 -8.78
.40 -.60 -1.20 -1.80 -2.58 -3.45 -4.41 -5.37 -6.34 -7.32 -8.30
.50 -.50 -1.00 -1.50 -2.25 -3.07 -3.93 -4.82 -5.74 -6.67 -7.57
.75 -.25 -.50 -.75 -1.12 -1.63 -2.22 -2.86 -3.53 -4.23 -4.94

1.00 0.00 0.00 0.00 .00 .00 .00 0.00 .00 0.00 .00
1.25 .25 .50 .75 1.13 1.65 2.27 2.97 3.71 4.49 5.29
1.50 .50 1.00 1.50 2.25 3.19 4.24 5.36 6.52 7.70 8.90
1.75 .75 1.50 2.25 3.33 4.62 6.01 7.47 8.97 10.51 12.02
2.00 1.00 2.00 3.00 4.50 6.16 7.91 9.73 11.59 13.40 15.21

- ,- 2.50 1.50 3.03 4.50 6.46 8.64 11.00 13.39 15.81 18.24 20.68
3.00 2.00 4.00 6.00 8.58 11.42 14.36 17.32 20.30 23.28 26.26
3.50 2.50 5.00 7.47 10.28 13.53 16.91 20.37 23.84 27.31 30.79
4.00 3.00 6.00 8.89 11.94 15.70 19.46 23.41 27.37 31.35 35.33
4.50 3.50 7.00 10.25 14.00 17.88 22.16 26.60 31.06 35.53 40.00
5.00 4.00 8.00 11.50 16.07 20.11 24.85 29.78 34.73 39.69 44.67
5.50 4.50 9.00 12.75 17.94 22.57 27.41 32.83 38.28 43.74 49.21
6.00 5.00 10.00 14.00 19.67 25.50 31.40 37.33 43.29 49.25 55.22
6.50 5.50 11.00 15.50 21.39 27.71 34.10 40.53 46.98 53.44 59.91
7.00 6.00 12.00 17.00 23.11 29.92 36.80 43.72' 50.67 57.63 64.59
7.50 6.50 13.00 13.50 24.83 32.13 39.50 46.92 54.36 61.81 69.28
8.00 7.00 14.00 20.03 26.56 34.33 42.20 50.11 58.05 66.00 73.96

.j 8.50 7.50 15.00 21.50 28.28 36.54 44.90 53.31 61.74 70.19 78.65
9.00 8.00 16.00 23.03 30.00 38.75 47.60 56.50 65.43 74.38 83.33
9.50 8.50 17.00 24.50 31.83 40.96 50.30 59.69 69.12 78.56 88.02

10.00 9.00 18.00 26.00 33.67 43.17 53.00 62.89 72.81 82.75 92.70
10.50 9.50 19.00 27.50 35.50 45.38 55.70 66.08 76.50 86.94 97.39
11.00 10.00 20.00 29.00 37.33 47.58 53.40 69.28 80.19 91.13102.07
11.50 10.50 21.00 30.50 39.17 49.79 61.10 72.47 83.88 95.31106.76
12.00 11.00 22.03 32.00 41.03 52.00 63.80 75.67 87.57 99.50111.44
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REDF (ISTAG). For example, if REDF
) = 100 and BLUF (3 ) = 50

the force ratio BI ( 3 ) will be BLUF(3)/REDF (3 ), or .5. For

a three-stage game with BI (3) = .5 the linear algorithm

found Y(.5) (3) = -1.5. That is to say, the difference

between the total number of Blue aircraft and the total

number of Red aircraft sent on close air support through

the three stages equals REDF (3) x Y3(.5) or -150. The same

results with a positive sign should occur if REDF (3) = 50

and BLUF (3 ) = 100 for three stages (as the aircraft for

both sides are assumed to have the same capabilities). In

this case BI (3 ) = 2. The algorithm found Y(2 (3)) = 3.0.

Hence the payoff to Blue for the three-stage campaign

was 50 x 3.0 = 150, as expected. Similar tests were con-

ducted using force ratio pairs of {.l, 101, {.2, 51,

{.24, 41, {.4, 2.51 and {.5, 21 for air wars lasting from

one to ten stages. Some small errors were expected due

to the cubic spline interpolation approximation

, and the linear extrapolation beyond the last grid

point. A percentage error is calculated for each of

these tests using

Error Y(BI( ) - (-Y(l/BI(IST })/BI( 5 )) x 100
t ~ (BI L )

Table VIII-2 shows the results of these tests. The first

line for each case is Y(BI(ISTAG)). The second line is

Y/B(ISTAGY(1/BI G)) The third line is the percentage error.
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TABLE VIII-2

THE PERCENTAGE ERROR IN THE LINEAR ALGORITHM

ERROR FR STG3 STG4 STG5 STG6 STG7 STG8 STG9 STG10
- .10 -2.60 -3.37 -4.32 -5.30 -6.29 -7.28 -8.27 -9.27
10.00 26.00 33.67 43.17 53.00 62.89 72.81 82.75 92.70

0.000 .000 .000 .000 .000 .000 .000 .000

.20 -2.30 -3.22 -4.06 -4.98 -5.96 -6.94 -7.93 -8.93
5.00 11.50 16.07 20.11 24.85 29.78 34.73 39.69 44.67

.000 -.027-1.016 -.123 -.027 .034 .062 .054

.25 -2.22 -2.99 -3.93 -4.90 -5.89 -6.88 -7.87 -8.86
4.00 8.89 11.94 15.70 19.46 23.41 27.37 31.35 35.33

.000 -.150 -.208 -.751 -.584 -.473 -.398 -.350

.40 -1.80 -2.58 -3.45 -4.41 -5.37 -6.34 -7.32 -8.30
2.50 4.50 6.46 8.64 11.00 13.39 15.81 18.24 20.68

.000 .152 .105 -.166 -.292 -.306 -.308 -.289

.50 -15 .2o
50-.0-2.2 -3.07 -3.93 -4.82 -5.74 -6.67 -7.57

2.00 3.00 4.50 6.16 7.91 9.73 11.59 13.40 15.21
.000 .002 .390 .727 .908 .895 .475 .508
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There was no error in the first three stages. The maximum

error found was just over one percent.

Validation Test

To validate a war game, a means of building confi-

dence in the game's ability to achieve its objectives must

be devised. An important distinction between verification

and validation is that models can be completely verified,

while complete validation is impossible. Richard L.

Van Horn (Ref 13:247) suggests that a model may be con-

sidered valid when it has achieved an acceptable level of

confidence.

Berkovitz and Dresher (3:155) have published

results of a linear game when the individual weapon systems

on each side have equal capabilities and the fraction of

the opponent's force caught on the ground in an air base

attack is one. Although they did simplify the problem with

the above assumptions, they were also able to obtain solu-

tions for a continuum of strategies. Table VIII-3 is a

copy of their results for up to an eight-stage game. That

is, Berkovitz and Dresher do not require that the fractions

of the Blue force sent on CAS, ABA or AD be 0, 1/3, 2/3,

or I (M=3). Instead, they allow any fraction of the force

to be sent on CAS, ABA or AD (of course they require the

individual fractions to sum to one). Because of their

"continuous" feature of the Berkovitz-Dresher results,

some differences between the two results should exist.
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For example, consider the case of a three-stage

game with REDF (3} = 100 and BLUF (3) = 5. In the continuous

case the optimal strategy for the third stage (start of the

war) is that Red sent 5 aircraft in air base attack and 95

aircraft in close air support, while the optimal strategy

for Blue is to send his force on air base attack and/or

air defense. The possible results of this stage is a

payoff equal to -95 for Blue with the remaining force

sizes (Table VIII-4) depending on the Blue strategy.

TABLE VIII-4

THE RESULTS OF CONTINUOUS STRATEGIES

Blue Strategy '2'
ABA AD REDF'2 BLUF (2)

5 0 95 0

4 1 96 1

3 2 97 2

2 3 98 3

1 4 99 4

0 5 100 5

In the second and first stage, one of the optimal strate-

gies for both sides is to send all the rest of their forces

on close air support missions. The total payoff from

Berkovitz and Dresher is -95 + 2 (BLUF(2) - REDF (2}) =-285.

This result is given in the Berkovitz-Dresher Table

(Table VIII-3).
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Consider now the same problem but with a finite

set of strategies, i.e., the fraction of forces sent is

an integer multiple of M. Assume M=3, then Red cannot

send 5 aircraft on air base attack. Either he sends 33 air-

craft on this mission or he send nothing. The obvious

solution in this case is that he sends nothing on air base

attack and sends all his forces in close air support

for all three stages. In the mean while, Blue will send

his five planes on air base attack at the third stage

(start of war) and send them on close air support missions

at the second and first stages. The results are in

Table VIII-5.

TABLE VIII-5

THE RESULTS OF DISCRETE STRATEGIES (M=3)

Blue Strategies Red i

Stage CAS ABA AD CAS BLUF (I ) REDF GV

3 0 5 0 100 5 95 -100

2 0 5 0 95 5 95 - 90

1 5 0 0 95 5 95 - 90

-280

Thus the optimal payoff obtained using the linear algorithm

is -280. This example shows the reason tiat differences

will exist between the results of this special case of the

linear algorithm and the Berkovitz-Dresher results. Let

B(BI (MSTAG)) be the total game value in the Berkovitz-

Dresher solution at force ratio B and total number of
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stages MSTAGE assuming that Red has initial force of one

unit. Table VIII-6 summarizes the Berkovitz-Dresher

results for all of the force ratios (grid points) used in

the linear algorithm. Table VIII-7 shows the fractional

differences between the linear algorithm results

(Table VIII-l) and Berkovitz-Dresher results (Table VIII-6)

calculated as follows:

Y ( BJMSTAG) - B (BI(MSTAG )
Fractional Difference = Y(BI (MSTAG)

Y (BI TM-STAG))

for MSTAGE = 1,2,...,8 and M=3.

Table VIII-8 shows the optimal game value at M=5

and Table VIII-9 shows the fractional difference between

the linear algorithm (Table VIII-8) and Berkovitz-Dresher

results (Table VIII-6). It was expected that the linear

algorithm results for M=5 would universally be closer to

the Berkovitz-Dresher results than those obtained for

1M=3. This proved not to be the case at each grid point.

.iThere appears to be an error in the Berkovitz-Dresher

table. Another author (Ref 9:76) also found this error.

Comparisons to OPTSA

Until now we have only tried validating

the model when aircraft capabilities on both sides

are identical. To make sure that the model gives reason-

able results when the sides have different capabilities,
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TABLE -VrrI -6

BERKOVITZ AND DRESHER RESULTS AT THE SAME
FORCE RATIO USED IN LINEAR ALGORITHM

FR STG1 STG2 STG3 STG4 SG5 STG6 STYG7 STG8
0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00 -8.00
.05 -.95 -1.90 -2.85 -3.83 -4.83 -5.82 -6.82 -7.82
.10 -.90 -1.80 -2.70 -3.67 -4.66 -5.65 -6.65 -7.64
.15 -.85 -1.70 -2.55 -3.50 -4.43 -5.47 -6.47 -7.46
.20 -. 80 -1.60 -2.40 -3.33 -4.31 -5.30 -6.29 -7.28
.25 -.75 -1.50 -2.25 -3.17 -4.14 -5.12 -6.11 -7.11
.30 -.70 -1.40 -2.10 -3.00 -3.97 -4.95 -5.94 -6.93
.40 -.60 -1.20 -1.80 -2.67 -3.62 -4.59 -5.55 -6.53
.50 -.50 -1.03 -1.50 -2.25 -3.10 -3.98 -4.89 -5.83
.75 -.25 -.50 -.75 -1.13 -1.59 -2.10 -2.62 -3.14

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.25 .25 .50 .75 1.13 1.59 2.10 2.63 3.15
1.50 .50 1.00 1.50 2.25 3.18 4.17 5.20 6.23
1.75 .75 1.50 2.25 3.38 4.74 6.17 7.61 9.08
2.00 1.00 2.00 3.00 4.50 6.19 7.96 9.78 11.65
2.50 1.50 3.00 4.50 6.67 9.05 11.48 13.89 16.33
3.00 2.00 4.00 6.00 8.67 11.55 14.49 17.45 20.42
3.50 2.50 5.00 7.50 10.67 14.05 17.49 20.95 24.42
4.00 3.00 6.00 9.00 12.67 16.55 20.49 24.45 28.42
4.50 3.50 7.00 10.50 14.67 19.05 23.49 27.95 32.42
5.00 4.00 8.00 12.00 16.67 21.55 26.49 31.45 36.42
5.50 4.50 9.00 13.50 18.67 24.05 29.49 34.95 40.42
6.00 5.00 10.00 15.00 20.67 26.55 32.49 38.45 44.42
6.50 5.50 11.00 16.50 22.67 29.05 35.49 41.95 48.42
7.00 6.00 12.00 18.00 24.67 31.55 38.49 45.45 52.42
7.50 6.50 13.00 19.50 26.67 34.05 41.49 48.95 56.42
8.00 7.00 14.00 21.00 28.67 36.55 44.49 52.45 60.422*A 8.50 7.50 15.00 22.50 30.67 39.05 47.49 55.95 64.42
9.0 8.00 16.00 24.00 32.67 41.55 50.49 59.45 68.42

9.50 8.50 17.00 25.50 34.67 44.05 53.49 62.95 72.42
10.00 9.00 18.00 27.00 36.67 46.55 56.49 66.45 76.42
10.50 9.50 19.00 28.50 38.67 49.05 59.49 69.95 80.42
11.00 10.00 20.00 30.00 40.67 51.55 62.49 73.45 84.42
11.50 10.50 21.00 31.50 42.67 54.05 65.49 76.95 88.42
12.00 11.00 22.00 33.00 44.67 56.55 68.49 80.45 92.42
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TABLE VIII-7

THE FRACTIONAL DIFFERENCE BETWEEN THE LINEAR
ALGORITHM RESULTS AT M=3 AND

BERKOVITZ-DRESHER RESULTS

F: ST01 SfG2 STG3 STG4 SrG5 S TG STG7 STG8
-0 0.00 0: @OO 0.000 0,000 0.000 0.000 0.000 0.000 0.000

-05 0.00 0.000 -.018 -.050.-.061 -. 075 -.D72 -.067
10 0.000 -.038 -. 039 -- 0i -. 066 -. 057 -.050

. .:' 0,000 0.000 -. 062 -. 063 -. 051 --. 043 -. 03. -. 032
.20 0 -0.('.) 0-000 -.043 -.037 -. 061 -. 065 -. 056 -. 049
.25 0.,000 0.000 -. 013 .-.059 -. 052 -0045 -. 038 -. 033
-3 0. (100 0,000 -. 002 --,030 --.028 -.026 -. 022 -. 019

0.000 0.000 -. 000 -.0,35 -. 049 -. 042 -. 034 -. 030

.50 0.000 0.000 -.o00 -.000 -.,00? --.013 -.014 -. 014

.?5 0.000 0.000 0.000 .000 .029 .055 .08.4 .110

1.2S 0.4000 0.000 0.000 .000 .036 .077 .115 .151
I.50 3..000 0.000 0.000 0.000 .005 .013 .030 .044
1.75 00 0.000 0.000 -. 014 -. 025 -. 026 -.013 -. 012
2-00 0.000 0.000 0.000 O.00O -. 005 "-.006 -. 005 -.005
2,0 . 000 0.U00 0,000 -. 033 -.040 -. 044 -. 037 -. 033
V00 0.000 0.000 0.000 -. 010 -. 012 -.009 -.007 -. 006
3.50 0.00C 0.000 -.004 "-.038 --. 039 "-.034 -. 029 -. 025
4.00 0.000 0.000 -.,012 1 -0 .051 -- .)53 -. 045 -. 038
".,.0 0.000 0.000 -. 024 -. 048 -. 066 -. 060 -.051 -. 044
5.00 0.000 0.000 -,03 -,037 --.072 -. 066 -. 056 -. 049
7.50,0 .000 ,00 .0'' ""9.040 -. 066 -. 076 -. 064 -. 056
-... o 0.000 0,000 -. 0 1. .,01 -. 041 -. 05 -. 030 -. 026
6.3, 0. 0 0.000 -. 065 --.060 -. 040 -. 041 -. 035 -. 031
7.00 0,000 0.000 --.059 -:.07 -.055 -. 046 -. 040 -. 0357&D0. 00..000 - ,03.4 -- 074 -. 060 -. 050 .-.01,3 -. 038074.. .,0.0050 0*uq"

8.00 0.000 0,000 -. 0"' - 030 --. 063 -. 054 -*47 -- 041
... .0 0,000 0.000 -. 0, --.085 -. 069 -,058 -. 050 -. 043

9.00 0.000 0.000 -. 043 -*OC.0T - .072 -. 061 -. 052 -. 046
9,50 0.000 0,000 -. 041 .089 -. 075 -. 063 -. 055 -. 048

10,00 0.000 0.000 -. 0Z8-- .0e? --. 078 --.066 --. 057 -. 050
:L0.50 0-00.' 0.000 -. (036 -,089 -. 021L,, -. 068 w.019,:o -..051
".0) 0.00 0V000 .-.034 -- 089 -,3 -.070 -. 060 -.053

11.50 0'000 0.000 -. 033 -. 089 - .026 -. 07 -.062 -.054

1. 0 0.00 01 -,090 .6S8 -. 074 -. 063 -. 055
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TABLE VIII-8

THE LINEAR ALGORITHM OPTIMAL GAME VALUES AT M=5

FR STGI STG2 STG3 STIG4 STG5 STG6 STG7 STG8 STG9 STG1O
0.00 -1.00 -2.00 -3.00 -4.00 -5.00 -6.00 -7.00 -8.00 -9.00-10.00
.05 -. 95 -1.93 -2.80 -3.65 -4.60 -5.59 -6.58 -7.58 -8.57 -9.57
.10 -.90 -1.80 -2.60 -3.57 -4.55 -5.54 -6.53 -7.53 -8.52 -9.52
.15 -.85 -1.70 -2.53 -3.39 -4.36 -5.35 -6.34 -7.33 -8.33 -9.33-
.20 -.80 -1.60 -2.40 -3.31 -4.28 -5.26 -6.26 -7.25 -8.25 -9.25
.25 -.75 -1.50 -2.25 -3.11 -4.08 -5.05 -6.02 -6.99 -7.97 -8.96
.30 -.70 -1.40 -2.10 -3.00 -3.93 -4.90 -5.88 -6.86 -7.85 -8.84
.40 -.60 -1.20 -1.80 -2.67 -3.62 -4.58 -5.54 -6.51 -7.49 -8.47
:50 -.50 -1.00 -1.50 -2.25 -3.09 -3.98 -4.89 -5.80 -6.73 -7.67
.75 -.25 -.50 -.75 -1.13 -1.65 -2.25 -2.89 -3.55 -4.24 -4.94

1.00 0.00 0.00 0.00 -.00 -.00 .00 .00 .00 -.00 -. 00
1.25 .25 .50 .75 1.13 1.66 2.30 2.99 3.74 4.51 5.32
1.50 .50 1.00 1.50 2.25 3.20 4.23 5.34 6.48 7.66 8.85
1.75 .75 1.50 2.25 3.38 4.68 6.05 7.49 8.98 10.50 12.04
2.00 1.00 2.00 3.00 4.50 6.18 7.96 9.76 11.59 13.45 15.33
2.50 1.50 3.00 4.50 6.67 9.04 11.42 13.83 16.26 18.71 21.16
3.00 2.00 4.00 6.00 8.58 11.28 14.18 17.12 20.08 23.04 26.02
3.50 2.50 5.00 7.50 10.62 13.89 17.23 20.65 24.09 27.55 31.01
4.00 3.00 6.00 9.00 12.43 16.21 20.14 24.04 27.95 31.85 35.76
4.50 3.50 7.00 10.50 14.59 18.58 23.01 27.46 31.93 36.41 40.89
5.00 4.00 8.00 12.00 16.58 21.36 26.30 31.27 36.24 41.22 46.21
5.50 4.50 9.00 13.49 18.40 23.59 29.03 34.49 39.96 45.44 50.92
6.00 5.00 10.00 14.96 20.20 25.82 31.75 37.71 43.68 49.66 55.64
6.50 5.50 11.00 16.41 22.02 28.15 34.58 41.03 47.50 53.97 60.45
7.00 6.00 12.00 17.84 23.92 30.48 37.40 44.34 51.30 58.28 65.25
7.50 6.50 13.00 19.25 26.00 s2.72 40.13 47.57 55.03 62.50 69.98
8.00 7.00 14.00 20.60 28.05 34.96 42.86 50.80 58.76 66.72 74.70
8.50 7.50 15.00 21.95 30.08 37.29 45.68 54.11 62.57 71.03 79.50
9.00 8.00 16.00 23.30 32.00 39.64 48.50 57.42 66.37 75.33 84.30
9.53 8.50 17.00 24.65 33.83 41.99 51.23 60.6U 70.10 79.56 89.03
10.00 9.00 18.00 26.00 35.67 45.50 55.40 65.33 75.29 85.25 95.22
10.50 9.50 19.00 27.50 37.50 47.83 58.22 63.65 79.10 89.56100.03
11.00 10.00 20.00 29.00 39.33 50.15 61.04 71.97 82.91 93.88104.84
11.50 10.50 21.00 30.50 41.17 52.48 63.86 75.28 86.73 98.19109.66
12.00 11.00 22.00 32.00 43.00 54.80 66.68 78.60 90.54102.50114.47
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TABLE VIII-9

THE DIFFERENCE BETWEEN THE LINEAR ALGORITHM
RESULTS AT M=5 AND BERKOVITZ-DRESHER RESULTS

FR STG1 STG2 STG3 STG4 ST5 STG6 STG7 STW
0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.05 0.000 0.000 -.018 -.050 -.049 -.042 -.036 -.032
.10 0.000 0.000 -.038 -.028 -.023 -.020 -.017 -.015
.15 0.000 0.000 -.007 -.032 -.028 -.024 -.020 -.018
.20 0.000 0.000 -. 000 -. 006 -. 007 -. 006 -. 005 -. 004
.25 0.000 0.000 -. 000 -. 019 -. 015 -. 014 -. 015 -. 016
.30 0.000 0.000 -. 000 -. 000 -. 008 -. 010 -. 010 -. 009
.40 0.000 0.000 -.000 -.001 -.001 -.002 -.002 -.003
•50 0.000 0.000 -. 000 -. 000 -. 001 -. 000 -. 001 -. 004
.75 0.000 0.000 -.000 .000 .036 .066 .094 .116

1.00
1.25 0.000 0.000 0.000 .000 .042 .086 .123 .157
1.50 0.000 0.000 0.000 -. 000 .007 .015 .026 .039
1.75 0.000 0.000 0.000 .000 -. 012 -. 021 -. 015 -. 011
2.00 0.000 0.000 0.000 0.000 -. 001 -. 000 -. 002 -. 005
2.50 0.000 0.000 0.000 -. 000 -. 001 -. 005 -. 004 -. 004
3.00 0.000 0.000 0.000 -. 011 -. 024 -. 022 -. 019 -. 017
3.50 0.000 0.000 0.000 -. 005 -. 011 -. 015 -. 015 -. 014

-, 4.00 0.000 0.000 0.000 -.019 -.021 -.017 -.017 -.017
4.50 0.000 0.000 0.000 -. 006 -. 025 -. 021 -. 018 -. 015
5.00 0.000 0.000 0.000 -. 005 -. 009 -. 007 -. 006 -. 005
5.50 0.000 0.000 -.001 -.015 -.020 -.016 -.013 -.011
6.00 0.000 0.000 -. 003 -. 023 -. 028 -. 023 -. 020 -. 017
6.50 0.000 0.000 -.005 -.029 -.032 -.026 -.022 -.019
7.00 0.000 0.000 -.009 -.031 -.035 -.029 -.025 -.022
7.50 0.000 0.000 -.013 -.026 -.041 -.034 -.029 -.025
8.00 0.000 0.000 -.019 -.022 -.045 -.038 -.032 -.028
8.50 0.000 0.000 -.025 -.020 -.047 -.040 -.034 -.030
9.00 0.000 0.000 -.030 -.021 -.048 -.041 -.035 -.031
9.50 0.000 0.000 -. 034 -. 025 -. 049 -. 044 -. 038 -. 033
10.00 0.000 0.000 -.038 -.028 -.023 -.020 -.017 -.015
10.50 0.000 0.000 -.036 -.031 -.026 -.022 -.019 -.017
11.00 0.000 0.000 -.034 -.034 -.028 -.024 -.021 -.018
11.50 0.000 0.000 -. 033 -. 037 -. 030 -. 026 -. 022 -. 020
12.00 0.000 0.000 -.031 -.039 -.032 -.027 -.024 -.021
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*1

the author compared the linear model results to those

obtained using OPTSA. But, since there are no published

tables of OPTSA results, the author generated a computer

code (Appendix E) to implement OPTSA. This model provides

the optimal game value for a three-stage game. In the

test, assume REDF (3) = 100 and BLUF (3) = 125, and all

aircraft capabilities equal one (after 51.16 cp second

execution time) OPTSA provides a game value of 75, which is

exactly the same as given in Tables VIII-l, VIII-6, and

VIII-8. Those tables give Y(1.25 (3)) - .75; i.e., the

optimal game value = .75 x REDF (3 ) 
- 75. Now execute OPTSA

using the following data: REDF (3 ) = 100, BLUF (3) = 500,

BABA = 1, RABA = 3, BAD = 1, RAD = 3, BCAS = 2, and RCAS = 1

it gives an optimal game value of 2138.74. The linear

algorithm with the same data (Table X-l) gives Y(5( 3 )) =

21.19; i.e., the optimal game value = 21.19 x REDF
(3 ) =

2119. The error in the linear algorithm is 0.889 percent.
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IX. An Interactive Game Aloih for Trinn and

Assisting the Commander

Introduction

As most operational commanders of general purpose

forces know, the ways such forces are employed can have

a great impact on the outcome of a conventional tactical

campaign. While it is true that larger and better eqjuipped

forces win over inferior forces more often than they lose,

history (6:1:28) is replete with examples where superior

forces were defeated as a result of the unwise employment

of the superior forces, and the wise employment of the

inferior forces. Using combat simulations, it is also very

simple to demonstrate the defeat of superior forces through

a combination of "smart" and "dumb" force employment by

the victor and the loser, respectively. Even when a

"black and white" win or lose is not the issue, it is

clear, both from historical and analytical perspectives,

that a wide range of outcomes in conventional tactical

campaigns can be expected, depending upon how the forces

are used.

In this context a "strategy" is a series of daily

decisions on allocating air forces among close air support,

* air base attack, and air defense missions. It depends

each day on the capabilities of the two sides, the stage
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of the campaign, and the other critical variables.

The program GAME is designed to help train and

assist the commander with regard to the allocation of

tactical air war resources. The program GAME uses the

optimal game values provided by the linear algorithm.

For any given scenario, GAME computes the "optimal" strate-

gies for each side. The only difference in the GAME

algorithm between the assist and training mode is when the

computer prints the optimal strategy. When GAME is used

in the assist mode, the computer plays the same side with

the commander and it prints both sides' optimal strategies.

The commander can then specify strategies other than the

optimal strategy and determine their effect on the game

value. When GAME is used to train the commander, the com-

puter plays the enemy against the commander and it does not

print the enemy's "optimal" strategy until after the com-

miander has entered his strategy. The commander then has

the option to see one of his optimal strategies. This

optimal strategy will appear before the commander has

entered his strategy and the game will continue based on

the strategy chosen by the commander, not his optimal

:1 strategy.

The Algorithm

GAME uses a copy of the results of the linear

algorithm. Before running the GAME program, we must
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execute the linear algorithm program (F3GAME). The program

F3GAME asks the player to specify: (1) the maximum number

of stages; (2) the aircraft capabilities for both sides;

(3) the number of grid points. The number of grid points

is used to determine the values of the state variable

(force ratio) at which solutions will be obtained. In

solving this game, the initial Red force size is assumed

to be 1. After running the program F3GAME, it will write

on tape 3 the above data plus; (4) the force ratio at

each grid point; and (5) the game value for each stage at

each grid point. Then, program GAME will execute. First

it reads the data from tape 2, stores the force ratio at

each grid point in the vector X with size (40), and stores

the game values in a vector Y with size (400).

Conceptually, this information can be represented as in

Figure IX-l with up to 40 points for each stage. Second,

the program then requires the player to select what kind

of game he wants to play, training or assisting. Third,

the player enters the total number of states he wants to

play (MSTAGE) and the number of aircraft available to each

side at the start of the game, BLUF(MSTAGE), REDF(MSTAGE)).

GAME is able to efficiently determine the optimal

strategies and the corresponding game value at any arbi-

trarily selected stage (ISTAG) of the game by solving

a single game. The entering force ratio BI(ISTAG)

is given. Using this force ratio GAME generates the
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one-stage payoff matrix for the game (T(BI(ISTAG) ,J,K) for

J=I,...B, B=l,...R. BI(ISTAG) is also used to generate,

using the state transition functions, BI(ISTAG-1) and

RR(ISTAG) for any selection of strategies J and K at ISTAG.

This resulting force ratio is then used in Figure IX-I,

with cubic spline interpolation between grid points, to

generate Y(I (ISTAG- )) for all J=l,...B and K=l...R. The

sum of the one-stage (T(BI(ISTAG) ,J,K) and Y(I (ISTAG-l))

x RR(ISTAG) values are the payoff values in the single

stage game to be optimized. This process is summarized in

Figure IX-2. The solution of this game provides the game

value and optimal strategies for Blue and Red at ISTAG.

Note that in the training mode, regardless of the

strategy selected by the commander, an updated force ratio

and game value can be calculated. At the next stage we

use the entering force ratio and the procedure discussed

above to determine the optimal strategies and game value

by again only solving one game!

In the training mode GAME generates a random

number and selects.according to this nuberjone of mixed

strategies for the side it is playing. When the commander's

strategy is entered into the computer, GAME calculates and

prints the game value of this stage, the total game value

from his play and the previous play(s), and the new state

of the game according to the chosen strategies of both

sides. This procedure continues until the end of the game.

81



'4I

0 W)

14
4

E-4I

.41
0

z 0

44.

0 z)
44 0

4

E-1I

82



Recall that the computer strategies are printed before the

player's strategy enters the computer in the assist mode

and is printed after it enters in the training mode.

Appendix C contains the player guide and the code for

GAME.
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X. Comparison of Weapon Systems

Developing countries are frequently involved in

difficult weapon system procurement decisions. For

example, suppose a country needs to improve its tactical

air force. It may have several different alternative air-

crafts available to purchase (e.g., F-15, Mirage, etc.),

each with different capabilities and different costs.

Given a limited budget, which aircraft should be purchased?

This depends on how well each of the alternative aircraft

perform against the corresponding forces of a potential

enemy. It may also depend on the length of the war.

The purpose of this chapter is to show how multi-

stage game theory may be applied to help supply insight

to this procurement question. In the next section the

importance of using optimal strategies in these force-on-

force comparisons is discussed. This is followed by a

simplified illustrative example.

* The Importance of Optimal Strategies

Many simulations of force-on-force battles begin

2 by stating the enemy strategy (e.g., 15% of the aircraft

will be allocated to air defense, 40% to air base attack,

and 45% to ground support). At the worst, the allocations

are "thought up" in order to have something to make the
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program run. At best, the allocations are considered a

"best estimate" of the enemy's behavior. Typically, a

similar procedure is used to develop the strategy to be

followed by the friendly forces. These strategies are then

"fixed" or held constant throughout the evaluation of

several general-purpose forces (Ref 6:29).

Even when the strategies chosen are given "careful

thought" and analysts choose "good strategies," a procedure

that uses the same strategy in comparing alternative forces

makes invalid comparisons. To see why this is so, con-

sider a Blue force that is to be compared against a Red

threat. "Good" strategies are selected for both sides,

and a campaign is fought. Let the outcome, in terms of

some measure of merit, be called V1. Suppose now that a

new weapon system is added to the Blue force and a cam-

paign is fought again, with the same strategies as before,

and a more favorable outcome, V2 is achieved. The state-

nent usually made at this point is, "The value of the

weapon system is the incremental difference in the out-

comes, V 2-V1. However, the quantity, .It V1 1 could well

be an overestimation of the effects of the weapon system.

The reason is simple. In a conventional tactical campaign,

there generally exist alternative strategies for Red that

could at least partially counter the new weapon system.

Conversely, V 2-V 1 could well be an underestimation or

overestimation since there probably exist alternative Blue
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strategies that would make better use of the new weapon

system. Thus, to say that in a conventional tactical

campaign (where both forces have a wide range of strategy

options) that the value of a weapon system is V 2-V1, may

be an incorrect and misleading statement.

of course, the problem is the same when alterna-

tive Blue forces are compared. The best Red strategy

against Blue alternative force A is probably different

from the best strategy against Blue alternative B.

Similarly, Blue's best strategies will be different.

It becomes obvious then that the relative effective-

ness of opposing general-purpose forces should be deter-

mined in a context where each is allowed to follow an

"1optimal" allocation policy which maximizes the force's

effectiveness.

$ Example

This section contains an example which illustrates

how a multi-stage simultaneous game can help the decision

maker answer the question of which tactical airplane

should be purchased with a fixed budget. The example will

use the linear model. The country with the procurement

decision will play Blue. His enemy is the Red force.

Suppose Red has 100 aircraft with the following

capabilities: RABA=3, RAD=3, RCAS =1. Blue may purchase

either of two aircraft called type A and type B. Type A

has the following capabilities: BABA=l1, BAD =1, BCAS= 2.
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Type B has capabilities represented by BABA -1, BAD-i1,

BCAS =3. Thus type B is the better aircraft due to its

improved close air support capability. However, the life

cycle cost of aircraft type B is 1.25 times the life cycle

cost of aircraft type A. Hence, with a fixed budget, more

type A aircraft can be purchased.

To analyze this problem, two runs of the linear

algorithm were performed--one with the Red aircraft versus

Blue type A, and the other with the Red aircraft versus

Blue type B. Tables X-1 and X-2 show the results of the

first and the second run respectively for up to a 10-stage

(day) war. Across the top are the 10 stages and down the

left side is the initial force ratio. The tables contain

the optimal game value to Blue per Red aircraft.

For example, consider the Red versus Blue type A

campaign. Recall that RCAS =1 and BCAS =2. The close

air support capabilities of the two forces are expressed

in terms of equivalent close air support missions. Hence

Red aircraft has one equivalent close air support mission

and Blue aircraft has two equivalent close air support

missions. Suppose that the initial force ratio is 2.0 and

the war lasts 5 days. Then, Blue will be able to perform

- 6.7 more equivalent close air support missions per Red air-

craft. Since the initial Red force was 100, at the con-

clusion of the war, Blue will have performed 670 more

equivalent close air support destruction missions against
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TABLE X-1

TABLE OF GAME VALUES FOR BLUE TYPE A VERSUS RED

Fp STGI1 :&T'32 ST5.3 ST$34 ST-35 SG : T:357 758~ :&TG:- .T-:110
A. fIn -1. All -2. 00 -.3. 'i0 -4. A0 -5. 0 0 -6. 1Oli:l 7. 00 -8. @,i -9. (if-10. 10

.n. =, .-. 90 -1. 81 - .70 -.3.5N -4.47 -5.4.? -. 37 -7. 3 . .- -9. 31

.10 -. A-) -1.6A -2,. 47 -3.37 -4.30 -5.27 - .24 -7.2? - 8.. . -9.21

.15 -. 70 -1.40 -2.37 -73.26 -4.20 -5.17 --A. 14 -7. 1.3j -8.12 -Q.11

. 2f0 -. fl -1. .7-2. -3.16 -4.10 -5.07 .14 -7.0 fj3 -8. 12 -. 01
25 -. 50 -1.17 -2.17 -3. O. -4.00 -4.47 -. 94 -6.93 -7.92 -.. 91

O.0 -. 40 -1.07 -2.(11 -2.9 -.3.80 -4."6 -7. 73 -6.70 -7.6. -8.68
.40 -. 20 -. 87 -1.77 -64 -3. 56 -4.5' -.- 49 -6.47 -7.46 -.. 45.0 2.0 -.567 1 77 -,-' 64-.=.-

.. 7 -.. 30 -4.e. -h.24 -6.22 -7.21 -8.20

.75 .50 .00 -. 86 -1.73 -. ?.65 -3. k --. 53 -5.41 -6.29 -7.17
1.00 1.00 .- 7 .23 -. 19 -. 64 -1.11 - 1.5 -2. -. - . -5- -3.11
I.,5 1.50 1.44 1.15 .81 .45 .11 -.21 -. 52 -. 81 -. 10
S.50 (2.00 2.50 2.95 3.40 3.:3 4.29 4.77 5.25 5.74 6.23
1.75 2. 5 A 3. ?5 3.9:3 4.59 5.2-3 6. 1 ;.7, 7. 51 8. 28 9. 5
;. n1) 3.00 4.00 4. 839 5.76 6.70 7. 67 R . 6,6 9.6 -.4 1(1'.64 11 .63
2.56 4.00 6.::3 7.91 9.67 11.48 13..: 3; In.27 17.2 19.16 21.15

0:.I0 5. 00 8..3:3 11.49 14.59 17.66 20.72 ;-:. 78 26%.6S 29.8 32.89
3.50i 6.00 10.0 6 1:3.93 17.72 21.49 25. 2i3 ? .96 :32.69 *3;.40 4 .12
4. 010 7. Of 11.78 16. 34 20.83 25.28 29.71 :..12 :.SE 42.92 4. 1
4.50 8. (0 13.50 18.77 23.9E 29.10 34.21 3. 1 44.:-39 49.46 54. 5
5. ff 9.00 15.22 21.19 27.06 32.88 3 . 49.5 50.21 55.96 , .70
5.50 10.0 0 16.94 .2 30.19 36.70 43.18 4.64 56.08 ;.2.50 68. 92
6. 00 11.00 18.67 26. 05 :33. 3:3 40.54 47.?1 84. 8 I 1. 99 6,9.10 76.20
6.50A 12.0i0 2 0.39 28.47 :36.44 44.34 52.19 b11.02 67.83 75.62 :83.3 '

7.0oI 13.00 22.11 30.91 39.55 48.1:3 56.67 -. 18 73.66 82.13 90.558
7.5f, 14. 00 23. S3 *33.:32 42.66 51.93 A1.15 ft131.33 79.49 88.64 97.76
St.tl"O 15.0 25.56 35.74 45.77 55.72 65.S? P5.49 8-5. 33 95.14104. 95
8.5 0 16.00 27.28 :38.16 48.88 99.52 70.10 '1.64 91.16101.66l12.13

S9. 00 17.00 29.00 40.58 51.99 A-3.32 74.5' 85.830 97. 001 0-.17119.32
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TABLE X-2

TABLE OF GAME VALUES FOR BLUE TYPE B VERSUS RED

F p TG1 " T:.' :T ,T.:3 ST54 ST:G5 STf, :T,.7 ST$8 .ST'.9 ST$10T
11. 00 -1. CIO -. 00 -:3. 0(1 -4. O' -5.00 -8 . 00 -7. 00 -8.00 -9. 00-10. Ofl
.05 -. :;5 -1.70 -2.55 -:.3.52 -4.47 -5.4 _' - .37 -7.33 -8.:31 -9.29
.10 -.70 -1.40 -2.37 -3.37 -4.28 -5.23 - .20 -7.18 -8.16 -9.14
.15 -. 59 -1.22 -2.22 -3.2- -4.13 -5. U8 -h.u -7.03 -8.01 - .99
.20 -. 4f -1.07 -2.07 -:3.17 -.3.98 -4.9: -,.90 -6.88 -7.8? -8.84
. 25 -. 25 -.92 -1..-2 -2.92 -3.83 -4.78 - .75 -6.73 -7.71 -8..69
.3r, -.10 -.77 -1.75 -2.75 -3.67 -4.60 -5.55 -6.5P2 -7.49 -8.47
.4 A .20 -.47 -1.39 -P.383 -3.30 -4.23 -5.19 -6.16 -7.14 -8.13
.0" .0 -. 11-S -1. 0 0) -;. 00 -2.92 -3.86 -4.82 -5.8. -6.78 -7.7.;
.75 1.25 .75 -. 15 -1.12 -2.04 -2.9A -:-. 94 -4.91 -5.8Q -. 7

1.06 2.011 1.67 1.22 .82 .41 -. 02 -.48 -.92 -1.39 -1.87
1.25 2.75 2.69 2.40 8.11 1.78 1.4.- 1.10 .77 .49 .22
1.5(1 3.50 4.50 5.4:3 S.:37 7.30 8.21 9.15 10.11 11.07 1-.04
1.79 4.25 5.5A 6.83 8.06 9.29 10.54 11. 86 13. 16 14.48 15.81
2.00 5.06 6.67 8.20 9.73 11.29 12.90 14.52 16.16 17.81 19.46
2.50 S.50 10.00 12.32 15.13 17.91 20.9;1 _ 26.92 29.95 .32.99
3.00i 8.0A 13.3:'.3 14.48 23.58 28.65 33.71 :s.7- 4.3.A' 4A.84 53 .87
-3.51 9.50 15.89 22.09 28.21 34.30 40.37 .4..43 52.48 58.52 64.57
4.110 11.00 18.44 25.67 32.82 39.94 47.0:3 4.11 61.1'3 68.24 75.29
4.50 12.50 21.00 29.27 37.45 45.58 5.3.69 ;61.78 69.86 77.93 S6.On
5.00f 14.(0 23.56 32.85 42.05 51.21 A..333 :9.44 78.53 87.61 96.68
.f 15.50 26.11 3.45 4".68 56.85 A7.00 '7.12 87.22 97.31107.39

A.0A 17.0A P-8.67 40. 16 51.34 6.-.55 71.73 4.84. 9 01107.12118. 22
"-,.5I 18.50 :1.22 4:.65 55.95 68.18 80.37 9:.53104.68 11.30128.'1
7. fill 20.00 33.7S 47.23 60.56 7:3.81 87. 01 .Ii. 1113.34186.1.31;'.An
7. 9r0 P1.50 38.33 50.88 65.17 79.44 93.Z61'J.85122. 0113,.16150..9

A.00 ?3. 10 38.89 54.41 69.78 85. 07100. 31115. 51130. 68145.8316l. 97
8.50 24.50 41.44 58.0A 74.39 9A.701%6.951..-3. l.139..35155.51171.;8
9. 0 26.00 44.00 6I.59 79.00 96.3.113.61:5|I.82148.02165.191 .35
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Red than Red will have performed against Blue. Figures

X-l and X-2 show the same results graphically. The hori-

zontal axis represents the force ratio, the vertical axis

the game value. Each curve represents a different number

of stages in the war.

Now let's examine the preferences for type A versus

type B aircraft for different levels of the budget con-

straint. Recall that type B aircraft cost 1.25 tines as

much as type A. Hence, if the budget constraint permits

Blue to purchase 50 type A aircraft, the alternative

type B purchase would be 40 aircraft. The initial force

ratio can be calculated using an initial Red force of 100.

The game values in equivalent close air support missions

per Red aircraft for a 10-day (stage) war can be found

from Tables X-1 and X-2. The results are summarized in

Table X-3.

TABLE X-3

* PREFERENCE AS A FUNCTION OF BUDGET SI ZE

Number of Initial Game Value
Aircraft Force (per Initial
Purchased Ratio Red Aircraft)

Type A Type B Type A Type B Type A Type B Preference

25 20 .25 .2 -8.91 -8.84 B

50 40 .5 .4 -8.20 -8.13 B

125 100 1.25 1.00 -1.10 -1.87 A

250 200 2.50 2.00 21.15 19.46 A

500 400 .50 4.00 61.70 96.68 B
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It is noted that the preferences change based on

the initial force ratio. Figure X-3 can be used to deter-

mine the force ratios where preference changes occur.

The vertical axis continues to be the game value while the

upper horizontal axis represents the force ratio for the

plot of the Blue type A versus Red and the lower hori-

zontal axis represents the force ratio for the plot of

Blue type B versus Red. The dotted curve represents the

game value as a function of force ratio for the Blue type B

versus Red 10-day campaign. Initially, type B is preferred

to Type A. When the type A to Red force ratio reaches

about .75 then type A is preferred. Another cross-over

1 1 occurs when the type A to Red force ratio is 1.7 and 2.2.

A final cross-over occurs when the type A to Red force

* ratio exceeds 3.3. For all type A to Red force ratios in

excess of 3.3 Blue type B is the preferred purchase.

-* Table X-4 shows that the preference can also vary depend-

ing on the number of stages in the war. Assume the budget

allows the purchase of 125 type A or 100 type B Blue air-

craft.

Finally, Figure X-4 illustrates this concept for

the ten stages.
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TABLE X-4

PREFERENCE AS A FUNCTION OF NUMBER OF
STAGES IN WAR

Number of Game Value
Stages Type A Type B Preference

1 1.5 2.0 B

2 1.44 1.67 B

3 1.15 1.22 B

4 .81 .82 B

5 .45 .41 A

6 .11 -0.02 A

7 -.21 -.46 A

8 -.52 -.92 A

9 -.81 -1.39 A

10 -1.10 -1.87 A
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XI. A Modification to the Linear Model

Introduction

The linear algorithm does not allow for air-to-air

attrition. In this chapter, a binomial probability dis-

tribution is used to represent

1. the probability that an air base defender kills

an air base attacker,

2. the probability an air base attacker that sur-

vives the initial attack by the air base defender is able

to return fire and kill the air base defender, and

3. the probability that a weapon dropped by an

air base attacker that is not engaged by an air base

defender kills an aircraft caught on the ground. The air

base attacker is assumed to carry M weapons (bombs).

Formulation of the Binomial
Kill Probabiliti1e-s

Consider a one-sided combat between two homogene-

ous forces, a force of N indistinguishable "targets" and

a force of Z indistinguishable "interceptors" each having

M shots. Suppose the following assumptions apply:

1. At a fixed time the locations of all N targets

are known by the interceptors and hence are vulnerable to

intercept.
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2. Each interceptor can attack only one target in

air-to-air combat (M=l) but it can attack up to M targets

in ground attack.

3. The Z interceptors decide to allocate their

shots among the N targets as uniformly as possible to maxi-

mize the marginal expected value destroyed. If ZxM is an

integral multiple of N, then each target will be assigned

exactly L=(Zx M/M) shots, and the probability of survival

of each target will be equal to SUR(L) where SUR(L)

L
(l-p)

If Zx M is not an integral multiple of N, then we

can express the ratio L = (Z xM/N) as

L = I +F (11-1)

where I denotes the largest integer smaller than the ratio

L, and F denotes the fractional part of the ratio. In this

case the optimal targeting will be to allocate (I+l) shots

to a fraction F of the targets and I shots to the rest.

Thus, the average survival probability is given by SUR(L),

where

'I+
SUR(L) = (1-F) (l-p) +F(l-p) = (l-p)I (l-pF) (11-2)

For L less than unity z x M < N, then I=O, and SUR(L)can

be reduced to the simple form

SUR(L) = 1 - (px Z xM/N) for ZxM<N (11-3)
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Let K denote the number of targets killed and E(K)

denote the expected number of targets killed, then

E(K) = N(I-SUR(L))

=jpxZxM for ZxN<N (11-4)

N [I- (1-p) I (I-pF1 for ZxN<N

The binomial equation (11-4) will be used in the binomial

model of air war.

The Binomial Model--Definition
of-the Input Quantities

BLUF(ISTAG) = total number of Blue aircraft at the begin-

ning of stage ISTAG.

REDF(ISTAG) = total number of Red aircraft at the beginning

of stage ISTAG.

A1AB(ISTAG) = number of Blue aircraft sent on air base

attack at stage ISTAG.

ABAR(ISTAG) = number of Red aircraft sent on air base

attack at stage ISTAG.

ABD(ISTAG) = number of Blue aircraft sent on air defense

at stage ISTAG.

ADR(ISTAG) = number of Red aircraft sent on air defense

at stage ISTAG.

CASB (ISTAG) number of Blue aircraft sent on close air

support at stage ISTAG.
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CASR(ISTAG) = number of Red aircraft sent on close air

support-at stage ISTAG.

RDTBA = the ratio between Red defenders and Blue

attackers.

BDTRA = the ratio between Blue defenders and Red

attackers.

IRDTBA = the largest integer less than or equal to
RDTBA.

IBDTRA = the largest integer less than or equal to
BDTRA.

RDKBA = probability that a given Red defender will

kill the Blue attacker to which he was

assigned.

BAK = expected number of Blue attackers killed.

BAJ = number of Blue attackers that jettison
their load.

BAKRD = probability that a given Blue attacker that

* survives the Red defender's first round

... and jettisons his load will kill a Red

defender.

* RDK = expected number of the Red defenders killed.

BDKRA = probability that a given Blue defender kills

one Red attacker.

RAK = expected number of Red attackers killed.
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RAJ = number of Red attackers that jettison their

load.

RAKBD = probability that a Red attacker that sur-
vives the Blue defender's first round and

jettisons his load will kill a Blue defender.

BDK = expected number of Blue defenders killed.

BLGR = expected number of surviving Blue aircraft

after the air-to-air engagement.

RDGR = expected number of surviving Red aircraft

after the air-to-air engagement.

BLABA = number of Blue attackers which remain in
their mission and penetrate after air-to-air

engagement.

RDABA - number of Red attackers which remain in
their mission and penetrate after air-to-air

engagement.

FBC = fraction of the Blue aircraft caught on the

ground.

FRC - fraction of the Red aircraft caught on the

ground.

BABA = number of Blue shots which can be used to

kill Red aircraft on the ground.

BABAP = probability that a given shot by a Blue

penetrator will kill one Red aircraft on the

ground.
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RABA = number of Red shots which can be used to kill

Blue aircraft on the ground.

RABAP = probability that a given shot by a Red

penetrator will kill one Blue aircraft on the

ground.

BASTRF = the ratio between the number of shots Blue

penetrators have and the number of Red air-

craft caught on the ground.

RASTBF = the ratio between the number of shots Red

penetrators have and the number of Blue air-

craft caught on the ground.

IBASTRF = the largest integer less than or equal to

BASTRF.

IRSTBF = the largest integer less than or equal to

RASTBF.

BGK = expected number of Blue aircraft killed on

the ground.

RGK = expected number of Red aircraft killed on

the ground.

BCAS = the close air support capability of a Blue

aircraft.

RCAS = the close air support capability of a Red

aircraft.
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Computation of the Binomial Model

Air to Air Destruction. The following equations

are used to calculate the results of the air-to-air engage-

ment.

Red defender to Blue attacker ratio
A (ISTAG)

RDMA ADR (AM-5?

ABB(ISTAfl)

Integer of Red defender to Blue attacker ratio

_ _M - [__ _ _ A]__ _-

Blue attacker killed

BAK = AB [{ (1-MA (1-R BA[DTBA-I ]) }](11-7)

Blue attacker jettism

EJ = m Ain 1S) ,AM 1  1 (11-8)

Red defender killed

F40= (BAJ-BAK)BAKMD (11-9)

Blue defender to Red attacker ratio

ADB(IST) (11-10)

AM (ISTAG)

Integer of Blue defender to Blue attacker ratio
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Red attacker killed

RAK - ABAR(IS -AG) 11-{ (1-XiC RP T (1-BMA[B=-IBUID) )

(11-12)

Red attacker jettism

RAJ = m[i(AAR (IS G ), ADB(IS AG)] (11-13)

Blue~ defmider killed

ECK - (RAJ-RAK) EAXK (11-14)

Blue force after air-to-air ergageuents

BUM = BLTF (IS AG ) - BAK - BOK (11-15)

Red force after air-to-air engagements

FDGR = RW(IS!G) - RAK - RM (11-16)

Air Base Destruction. The following equations are

used to calculate the number of aircraft destroyed on the

ground for each side.

Blue attackers penetrated

BLABA = EAAB (ISAG i) - BAJ (11-17)

Red attackers pnetratad

FDABA - ABAR (U S) - RAJ (11-18)
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Ratio betwee Blue penetratcr shots a
th~ ed Worce caught on the 9qraMd

B M BLA x BABA (11-19)
FL x FCM

Integr of BMW

IBASTIF = [BASTRF] (11-20)

Blue aircraft killed on the ground

BG = FBCx BTM [1-{(1-RABAP)I Rs MF (1-RABAP [RSF-LRS3mF] }1
(11-21)

Red aircraft killed on the gzaund

= Fcx RDGR [1-{ (1-BABAP)I (1-BABAP[ -IBSF])]
(11-22)

Close Air Support.

PAYOFF(IPLTA) = CASB (I S ) x BCAS - CASR (ISTAG) x 1CAS (11-23)

The Remaining Forces to (ISTAG-I). Finally, the

total number of surviving forces for each side is calcu-

lated.

BUT (I S l E ' l ) - BLUF (ISTAG) - BAK - BIM - BGK (11-24)

RMF ( I S AG -1) - lw S1  G) - RAK - RCK - R(K 11-25)
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One Stage Equations for the

Binomial Model

The state variables BLUF(ISTAG) and REDF (ISTAG)

can again be transformed to the force ratio BI(ISTAG) and

the initial red force size REDF( STAG). As in Chapter VII,

we define s(J,l), s(J,2), and s(J,3) as the fraction of

Blue force assigned to close air support, air base attack

and air defense, respectively. Similarly, s(K,1), s(K,2),

and s(K,3) are the fraction of Red force assigned to close

air support, air base attack and air defense, respectively.

We can use equations 11-5 to 11-24 with the force ratio and

initial Red force state variables. Replace the "number"

in equations 11-5 to 11-24 with the force ratio and

REDF(ISTAG). BLUF(ISTAG) will then be the force ratio

BI(ISTAG) when REDF(ISTAG) equals one. In addition,

ABAB (ISTAG) . BI(ISTAG)

ABAR (ISTAG) = s(K,2)

ADB(ISTAG) = BI(ISTAG) x s(J,3)

ADR (ISTAG) = s(K,3)

CASB(ISTAG) = BI(ISTAG) x s(J,l)

CASR(ISTAG) s(K,l)

Equation 11-24 then becomes

BI(ISTAG-1) BI(ISTAG) - BAK - BDK - BGK (11-26)
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Equation 11-24 becomes

RR(ISTAG) = 1 - RAK - RDR - RGX (11-27)

The payoff for this stage when Blue plays his Jth strategy

and Red plays his Kth strategy, assuming that REDF(ISTAG)

is one, is

T(BI(ISTAG) ,J,K) = BI(ISTAG) x s(J,l) x BCAS

- s(K,l) x RCAS (11-28)

By using this notation, equation (7-13) can be used to

express the total payoff Blue wants to maximize.

M = REDF (M STAGE) [T(BI (MSTAGE) ,J,K) + RR (MSTAGE)

[T(BI(MSTAG-I) J,K + RR(MSTAGE- [

+ RR(2 } [T(BI ,J,K] ]...]1 (11-29)

The dynamic programming approach developed in

Chapter VII can now be used to obtain a numerical solution

of this problem. Time did not permit the computer imple-

mentation of this approach.
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X11. Summary, Conclusions, and Recommendation

The objectives of this study, as listed in

Chapter I, have been accomplished. An algorithm was devel-

oped to solve the multi-stage simultaneous game.

A multi-stage simultaneous game consists of many

two-person zero-sum games (stages). The payoffs on each

* stage are determined by the strategies chosen by the

players and by a state vector describing the capabilities

of each side at the beginning of the stage. A state transi-

* tion function is used to determine the state vector of

capabilities at the next stage from the state vector for

the previous stage and the player's strategies. The main

idea of the solution algorithm is to build at each stage

a matrix whose values are the payoffs obtained by playing

each of the given strategies at this stage and the optimal

strategies for the remaining stages. A dynamic program-

ming approach is used to determine the payoff obtained by

using the optimal strategies for the remaining stages.

Expected game values are calculated at each user-specified

grid point. A cubic spline interpolation is used to find

expected game values at intermediate points.

A tactical air war problem was selected to illus-

trate the usefulness of the algorithm. The missions are

close air support, air base attack and air defense. A
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linear model was developed in which the state vector

(number of Red and Blue aircraft) could change from stage

to stage only when air base attackers successfully pene-

trate the other side's air defense and kill aircraft on

the ground. Air defense can prevent the other side from

attacking the air base but will not result in any force

attrition. Rather than using the force sizes of Blue and

Red as the state variables in the computerized algorithm,

the author proved that a constant (initial Red force size)

and the force ratio (Blue/Red) could be used to completely

describe the state of the game. This reduces the size of

the problem by the square root (e.g., a problem using 100

grid points with two state variables can be solved with

the same accuracy using 10 grid points and a single state

variable).

A "GAME" was developed for training and assisting

the field commander. In the assist mode, the GAME is able

to answer the "what if" questions of the commander. In

the training mode, the GAME begins in any given initial

.1condition, the computer plays optimally as one side and the

commander plays the other side. At each stage the state

variable is updated according to the strategies chosen by

the player and the computer. The player has the option

of asking the GAME to tell him his optimal mixed strategies.

The GAME uses an output of the linear model, which

gives the optimal game value at any stage and at any state.
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Then GAME can calculate the optimal strategies for both

sides for any given conditions by solving only one payoff

matrix.

To compare two weapon systems, and to be fair in

the comparison, one should let each system play its optimal

strategies. The multi-stage simultaneous game is an

excellent way to compare two weapon systems when each side

plays its optimal strategy. An example comparing two types

of aircraft is shown in Chapter X. In this example, the

preferred system depends on the number of days (stages) in

the campaign and the initial force ratio.

A binomial model that permits attrition to both

sides in the air-to-air engagements is developed in

Chapter XI. This model can also use the force ratio con-

cept.

For an extension of this effort the author recoin-

mends the following:

1. Preparing a computer code for the binomial

model and comparing this model to the linear model.

2. Using more missions, such as reconnaissance

and SAM suppression.

3. Using more than one type of aircraft.

j 4. Examining other potential applications of the

algorithm to various types of games in war and in business.

5. Using the GAME as a method of introducing

* I multi-stage game theory to students in operations research.
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The GAME can help the students understand the concepts of

game value and mixed strategies.

6. Comparing actual weapon systems using the multi-

stage game algorithm. Determine how much help they may be

in the procurement decision.

In conclusion, this research has provided the

author and, hence, the Egyptian Air Force with a valuable

tool which hopefully will be used to both help train

* Egyptian Air Force commanders and help make important

procurement decisions.



Appendix A

Interpolation With Cubic Spline Functions

One of the difficulties with conventional poly-

nomial interpolation, particularly if the polynomial is

of high order, is the highly inflected or "wiggly" char-

acter which it is possible for the interpolating polynomial

to assume.

A smoother interpolating function can be produced

using the cubic spline function.

The construction of a cubic spline interpolating

function can be briefly described as follows ( 8:47). We

are given a series of points xi(i=0,l,2,...,n) which are

in general not evenly spaced and the corresponding function

values F(x) . Now consider two arbitrary adjacent points

x. and xi+. We wish to fit a cubic to these two points
1. i+

and use this cubic as the interpolating function between

them. We denote this cubic as

2 3-1 Fi(x) = a 0+a x+a x +a x (x<X<Xi+i) (A-l)
3.0 2 3 1:x

There are four unknown constraints in (i), and only two

conditions are immediately obvious, namely that

Fi (xi) = f(xi) and F i (x i+ l) = f(xi+ ). We are free to

choose the remaining conditions as we like, to accomplish
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our desired objective of "smoothness." The most effective

approach is to match the first and second derivatives (and

thus the slope and curvature) of Fi(x) to those of the

cubic F il(x) used for interpolation on the adjacent

interval x._<x<xi. If this procedure is carried out

for all intervals in the region x0<x<xn (with special

treatment at the end points) then an approximating function

for the region will have been constructed, consisting of

the set of cubic functions, Fi(x) (i=0,l,...,n-1).
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Appendix B

Dynamic Programming

Dynamic programming is a mathematical technique

often useful for making a sequence of interrelated deci-

sions. It requires formulating an appropriate recursive

relationship for each individual problem. However, it

provides a large computational saving over using exhaustive

enumeration to find the best combination of decisions,

especially for large problems.

The basic features which characterize dynamic pro-

gramiming problems are presented below (Ref 7:270-271).

1. The problem can be divided into stages, with a

policy decision required at each stage.

2. Each stage has a number of stages associated

with it.

3. The effect of the policy decision at each stage

is to transform the current state into a state associated

with the next stage.

4. Given the current state, an optimal policy for

the remaining stages is independent of the policy adopted

in previous stages.

5. The solution procedure begins by finding the

optimal policy for each state of the last stage.
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6. A recursive relationship that identifies the

optimal policy for each state at stage n, given the optimal

policy for each state at stage (n+l), is available.

7. Using this recursive relationship, the solution

procedure moves backward stage by stage--each time finding

the optimal policy for each state of that stage--until it

finds the optimal policy when starting at the initial stage.

1f
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Appendix C

User's Guide for the Game

This section is designed to acquaint the player

with the rules, procedures, and peculiarities of the game.

The game was designed to be played interactively and was

implemented in FORTRAN IV on the CDC CYBER 175 INTERCOM

system. The program F3GAME must be edited before the GAME

program (see Figure C-1) can be run. The program F3GAME

will request the player to set the maximum number of stages

to be played, the aircraft capabilities and the number of

grid points. F3GAME will calculate the optimal game value

for each grid point and for each stage and will write it

on TAPE3. When the ROW of F3GAME finishes, the player

should EDIT GAME and run it.

GAME will do the following steps:

1. Rewind tape 3 and read the data from it.

2. The program will print

"YOU CAN PLAY FROM 1 TO # STAGES"

"HOW MANY STAGES DO YOU WANT TO PLAY?"

where # is the maximum number of stages already set on

F3GAME. The player has to choose the number of stages he

wants to play.
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EDIT F3GAME

SET: 1. # OF STAGES
2. A/C CAPABILITY
RUN FTN5

EDIT GAME

RUN FTN5

USER SELECTS
1. TYPE OF GAME
2. # OF STAGES
3. OPTION 1 OR 2
4. BLUE AND RED

FORCE SIZE
5. WHICH SIDE HE

WILL PLAY

THE PROGRAM WILL PRINT THE OPTIMAL GAME
VALUE AND ASK THE PLAYER TO TRY TO BEAT IT

ISTAGE=Q1

/2

Fig. C-1. Playing Sequence Diagram
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ISTAGE=STAGE+1

RAIING NO rASSESSING

PROGRAM PRINTS ONE

OF THE OPTIMAL

STRATEGIES

2z 
- O STAGEOPT 

MA

STHE PLAYER INPUTS THE
STRIATEGY HE tSELECTS

SPROGRAM PRINTS ONE
OF THE OPTIMALSTRATEGIES

YIES

PROGRAM PRINTS:-
1. NEW BLUE AND RED FORCES

~2. THE ONE-STAGE GAME VALUE

3. THE ACCUMULATED GAME VALUE

~PROGRAM PRINTS :

1. THE OPTIMAL GAME VALUE
• 2. THE ACCUMULATED GAME VALUE

1! YES ANTE

Fig. C-i--Continued
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3. The program will print

"YOU HAVE THE OPTIONS:'$

"11. NOT TO SEE THE OPTIMAL SOLUTION."

"12. TO SEE ONE OF THE OPTIMAL SOLUTIONS."

The player selects option 1 or option 2 by printing "l"

or "2"9.

4. The program will ask the player to "PRINT:

BLUE FORCE, RED FORCE" and the player prints the number of

the Blue aircraft and the number of the Red aircraft.

5. The program will print

"IF COMPUTER PLAYS BLUE PRINT 1"

"IF COMPUTER PLAYS RED PRINT 11"

and the player has to select 1 or 11.

6. Depending on the force ratio, the number of

stages, and the data given by TAPE2 the program will cal-

culate the optimal game value and the optimal mixed strate-

gies for both sides at this stage. The program then will

draw a random number and decide which strategy it will

play. At the first stage the program will print

"TRY TO BEAT TOTAL GAME VALUE OF #

where # is the optimal game value calculated before.

7. The program will list the different strategies

and the different capabilities for both sides. The result

is:
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STAE# 1 2 3 4 5 6 7 8 9 10 J RED

CAS 3 2 2 1 1 1 0 0 0 0 CAS CASR

ABA 0 1 0 2 1 0 3 2 1 6 ABAB ABAR

AD 0 0 1 0 1 2 0 1 2 3 ADB ADR

where CASB, CASR, ABAB, ABAR, ADB, ADR are the capabili-

ties already set on F3GAME. For example:

8. The program will ask the player to print his

strategy. Then if option 2 was chosen, the program will

show the optimal probability of choosing each of the

strategies (mixed strategy).

9. As a result of strategies chosen by both sides,

the program calculates and prints new BLUE FORCE totals

(numbers), new RED FORCE totals, GAME VALUE, and total

GAME VALUE.

10. Steps 6-9 are repeated for each of the stages

assigned.

11. At the end of the game the optimal game value

is printed with the total game value for comparison.

12. If the player wants to play another game,

the program returns to step 2.

The following is the computer code of the GAME

program.

120



100= PROGRAM GAME
110= REAL TT(10,IO,2),ZSTR(40),X(40),Y(400) , B(12),C(10),
120= :VPSOL(10),qDOL(12),RW(178) ,YY(40) ,BI ,A(12,10),T
130= INTEGER IA,N,M1,M2,IW(40),IERNSTAGE,L,M ,IJK PIS
1:30= INTEGiER IA, ,M1,M2,IW K40),IER,NSTAGELM ,IJ,K ,ISTAG',SS(1

03)
140= DOUBLE PRECISION NL
150= REWIND 3
160= READ (3P +) NSTAGERADR, BABARAD, BRDsRCAS, BCRS,NF
170= DATA SS/3,2,2, 1 I, 11,40, , I, 0,2, 1, 0,3,2, 1 0 0 0, 1 0, 1,2, O, 1
180= : 3',M1/10r, M2,°O/,Ii,10,, IA-12/, B~o'121, C'10.1'

190= NL=123.DO
200= IY=O
210= DO 20 IS=IrNSTAGE
220= READ (3,*) (YY0.II),II=INF)
230= DO 25 II=INF
240= IY=IY+I
250=25 Y<IY)=YYII)
260=20 CONTINUE
270= READ (3,* (X(II),tI=1,NF)
280=2000 PRINT , "YOU CAN PLAY FROM I TO ",NSTAGE," STAGES'
290= PRINT ., HOW MANY STAGES YOU WANT TO PLAY 7
300= PRINT
310= READ *,NST
- I 320= PRINT -," YOU HAVE THE OPTIONS :

330= PRINT 1 1- NOT TO SEE THE OPTIMAL SOLUTIOIV "

340= PRINT *," 2- TO SEE THE OPTIMAL SOLUTION AFTER YOU PLAY'
350= PRINT *," WHICH OPTION YOU CHOSE?
360= READ *.NOP
370= PRINT *. " PRINT : BLUE FORCE 9 RED FORCE "
380 = PRINT .
:390= READ *, BLUFREDF
400= BI= BLUF/REDF
410= TG=O
420= PRINT *,' IF COMPUTER PLAY BLUE PRINT 1'
430=' PRINT *,' IF COMPUTER PLAY RED PRINT 11'
440= NN=O
450= PRINT *
460= READ *P IPL
470= DO 1000 ISTAG=NST,1,-1
480= N=NN+I
490= PRINT -, ".3TRGE '*"PNN
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IF cc BLUF.EQl.0.).OR.(REDF.EQ.0.))THEN
520= NPL=IPL
5*30= ELSE
540= B I=BLIJF'IMAX (1O.**(-10) , REDF)
550= DO 800 J=1910
560= DO 800 K=I10
570= TTcJK,1o)=(SScJ,1).BIBCAS/3.-SS(Kg1).RCAS/3.)
580= IF (ISTA'3.EQ.l) THEN
9590= A (J K) =TTCJ Kv 1)
*A 600 AJ+2 PK)= 0
610= 2"7=M IN(Z, A(<J K))
b20  ELSE

*630= RED=MAX (0. ,S(J,2) *B I*BABA/3cK-S(K 93) +RAD/3.)
6 4O= BLUE=MAX (0. ,:&S (K 2)*R.RBA3. -SSCJ p3)*B I *BAD3.)
650= Ta=MAx (0. -l10) 'AI-RED) )

*k660= t=MAXC1O. **c-10), (BI-BLUE)/MAX(10.**C-10)9 Cl-RED))
670= DO 30 II=lNF
680= IF(X(<II).GE.T .' THEN
690= IY=II+(ISTAG-2)*MF
700= PAIY=Y(IY-l)+(Y(IY)-Y(IY-1))*(T-X(II-l))/(XCII)-X(II

-1))
710= '30 TO 100
720= ENDIF
7:30= 30 CONTINUE
740= IY=ISTA'3flF
750= PAY=Y(IY)+YIY)-Y(IY-1)).(T-XCNF))/.5
760= 100 TT(J, Ky2) =TT WJ K, 1) +PAY*TS
770= AJ 9K)-TT(JpKtS)
780= A(J+2,I0=0
790= Z=MIM(ZAR(JK))
800= ENDIF
310= 800 CONTINUE
820= Do 850 J=1910
830= DO 850 K=19 10
840= 850 A (JvK) =A(JK) -Z

* I850= CALL ZX3LP(AIABPCPriM1,M2,VPSOLDSOLRWIwPIER)
*1860= DO 870 11-1,10

8370= STRCII) =DSOL(II)/V
880= 870 STP(II+l0) =PSOL(II)'V
890= '3VA=Z+1'V
900= IF (ISTAG.EQ.NST) THEN

>1910= '36=GVA.REDF
920- PRINT *v TRY TO BEAT TOTAL GAME VALUE OF PGVA*REDF
930. ENDIF
940- CALL GGUBS CMLpl1'BA)
950- ST=0
960= DO 875 MPLIPLPIPL+9
970= -;T=ST+STR<CMPL)

980=IF (BA.LE.ST) GO TO 979
990=875 CONTINUE
1000- ENDIF
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100 PRINT *'STRATRAYIEGYRII BU RTEY' '

10= PRINT *9"A BAt

1060- PRINT *'RDE PLAYja,,jlgo9 /qBNPL

100= ENDIF

1080= IF (NOPL.EQ.1)THND.B .E0)AD RD.E0.TE

1100= PRINT *BLERO.:IIS(II=,0

1240= PRINT *PRED POAY #-,(I-10STIIII120
1140= ELDSF
1150= TPRINTJ *)BLUF.STRATEGY.IS( 1)R .RINTFYOURSTRATEG

1170= RED +AyKEFMX0 ,SJ2.IBB-3.S(,)RD-3

120 .RDF:ED
*1220= PRIF *, GPEQ)AME VALUE. ,T, ' RED FRCE. = )RE

12300= PRINT *'LU PRBLU FORCE = ',BLUFI=qj

120= PRINT +qRE TROTAL GAME VALUE = IIqI=1j2
13230= PRIT

1260= PT *,' END OLF THEAME -(K%)RE)*CA/.

1:70= PRINT *A(.RD-A(.S(p2+IBE/.S(P)RDS

1290= PRINT GAM VAILYUE WAN T PLAY ANOHE =AMPREDT

1330= PRINT *
1340-0= READTINUE

1320= RN ENDOFTEGM

1430 ENDEO
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Appendix D

Computer Code for Linear Algorithm with M=3

0 (i.e., 10 Strategies)

100= PROGRAME TAPE
110- REAL 7T(40,10,10),SS(10,3),SrR(80),X(4o),Y(40) ,B(12),C(10),

120- :V,PSOL(10),DSOL(12),RA4(17d) ,YY(42) ,BI ,A(12,10),T
130- REAL CJ(40,3)
140- M~EG3ER IA,N,M1,M42,IW(40),IERNSTAGE,L,,4 ,IJ,K ,ISTAG
150- DAMh NTAGE/15/, RABA/l/, BABA1/, RAD/i!, BAD/li, RCAS/1/, BCAS/i/

160- :, NF/29/, B&ZKLf/. .000001/, RL'KILD/ .000001/
170- WRITE (4, *) NSrTrENF
180- DO 3000 IBLC=1l 510
190= PRINT7 *,'IBL TIBT

200- IF (IBrLi .tI.)THEw
210= ELSEIF( IBlC. LT. 5)THEN
220= BCAS=IBLC/2.+.S
230= ELSEIF (IBLC. LT. 8) THEN
240= BABA=m(IBLC-2 )/2.
250= BCAS=1.
260= ELSE
270= BABA=1
280- BA-(IauLz-S)/2.
29U- E NDIF
300=24 CcNT~IDME
310- rATA SS/3,2,2,1,1,1,4*0.0,0,1,0,2,1,0,3,2,1,0,0,0.0,1,0,1,2,0,1,2,
320- :3/M1/10/, M2/0/,,4./10/ IA/2/, B/12*1/, C/10*1I
330= DO 1000 ISTAG=1, NSTAGEo340- DO 900 I=1,NF
350=- IF (I.LE.7) THEN
360- BI-.05+.05*I
370= ELSEIF (I.LE.9) TI1M4
380= BI-~.4+.1 *1
390= ELSEIF(I.LE. 15)THLN
400- BI-n1.75+.25*I
410= ELSE
420- B1-5. 5+. 5*1
430= ENDIF
440 XCI )=BI

A450= =.
46D- D6 BOOJ--1,10
47D- DO 800 K=1,10
480= IF (ISTAG-E2.1) THEN

oD~ 49U- Tr(I,J,K)=Gs(J,1)*BI*BCAS/3.-SS(K,1)*RCAS/3..
500= A(J,K)--TT(I.J,K)
510- A(J+2, K)=0
520= Za441N(ZA(J,K))
530- ELSE
540- RED.14AX(0.,*(SS(J,2)*BI/3.-SS(K, 3)*RAD/3. )*BABA,)
550- BWE-MAX(0.. (SS (K,2) /3.-SS(J, 3) 3*BA/3. )*RABA)
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560- T2*I4AX(RNKIL. (1-RE))
570- r44MIA(BI*3NKLD, (al1-BLUEC))tZ4AX(RN=ILD, (1-IUME))
580- IFP(RD. GE. 1 )THME
590- PAY-iIAX(O., (IIBU.JE)ISTAG-M)
600- T2-1
610- ELSEIF( (T.GE.X("'1F-1) ).AN4D.T.LT.X(NF) )TH-IE
620- PAY t(NF-1 )+(Y(,rF)-Y(sJF-1) )*(T-X(4F-1) )/(XWNF)-X(NE-1))

*630- EILSET (T.LT.X(2))THe-14
640- PAY=Y(1)+(Y(2)-Y(l))*(T-X(l))/(X(2)-X(l))
650- EISEIF (T.LT.X(NF-1)) THEN
660- Mini
670- IC-42
680-= CALL icscrJu(x,Y,.\:F, a, ic, iER)
690m CALL ICSEVU(X, Y,NF, Ci, IC, T, PAY,M4, IER)
700- FTS

on71- PAY=Y(,.)+(Y(Nq)Y(NF))*(TX(F)).5
720- EN4DIF

* o730- 100 A(J,K)=1Yr(I,J,K)+PAY*T2

750- Z41fl4i(Z,A(J,K))
* 760= HENDIF

770= 800 Co~rINU
7X0= DO 850 J-1, 10

_790- DO0850 K-1,10
800-850 A(J, K)=A(J, K)-Z
810- IF (I - ED.1) THEN
820- Z-1-ISTAG
830- V-i
840m PSOL()1l
850- DSOL(1)1
860- DO 860 I1=2, 10
870- PSOL(I)0O
880- 860 DSOL(I))O

C)890- ELSE
4900- CALL ZX3LP(A,IA,B.C,N,41,M2,V,PSOL,DSOL,RW,'Wi,IER)

910- ENDIF
:1 0920- Do 870 11-1, 10

930- STR(II) =DSOL(II)/y
940m 870 STR(iidO) =PSCL(II)/V
950M iF(isAG.GI'.2)TMNL'
960- ENDIW
970- YY(I)-Z+1/V
980- 900 aCMu"
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*990- M 950 tI'1,NF
1000- Y(II)-YY(II)
1010-950 cx'JTDIam

*1020- IP(U(STAG.B2. 1) -AD (IBW. EQ. 1) )TM
1030- WRITE (4, *) (X(II), II4.I,)
1040- ENDIF

*1050- WRITE (4,*) (Y(II),II=1,NF)
1060=1000 Co'rINLE
1070=- 3000 CWATINJE

*1080= a
1090=*EOR
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100= PROGRAME PRINT
110- REAL FATEEN(40,20,15),X(42),Y(42),Z(42)
120= REWIND 4
130= READ(4,*) NSTAG,NF
140= READ(4,*) (X(II),II-1,NF)
150= DO 100 IBLC=1,10

r.160= DO 100 ISTAG=1,NSTAG
170= READ (4,*) (FATEEN(II,ISTAG,IBLC),II-1,NF)
180=100 CON~TINUE
190= DO 200 IBLC=l, 10
200= PRINT*
210= PRINT
220= PRINT*
230= PRINT *SFR STG1 STG2 STG3 STG4 STG5 STG6 STG7 STG

STG9
240= :STG1O'
250= DO 200 II=1,NF
260= PRINT '(1X,F5.2,10F6.2) , X(II),(FATEEN(II,ISTAGIBLC)

- ISTAG1l
-262= :410)

270=200 CONTINUEo280= END

0

00
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100= PROGRAM CURVES
110= REAL FATEEN(4U,20,15),X(42),Y(42).Z(42)
120= -REWIN. 4
130= READ(4,*) k4STAG,NF
140= READ (4,*) NSTAG,NF
150= READ(4,*) (X(II),Il=1,NF)
160= -Do 100 Ii3LC=I.1O
170= DO WO0 ISTAGI1,NSTAG
I8O- READ (4,*) (?ATEEN(1I,ISTAG,IBLC).,II-1,NF)
190=100 CONTINUE
200- X(NF4*1)=0. i
210= XOi4F+2)=1.
220= Y(NF+1)=-10.
230= Y(NF+2)-10.
240= CALL PLOTS(O.,0.,9)
250= CALL PLOT (0.,0.,3)
260- CALL PLOT (1.5,1.0,-3)I
270= CALL FACTOR(.7)

280- DO 400 IB-1,10
290= CALL AXIS(0.,1.,'FORCE RATIO',-11,9.,O.,X(bNF41),X(NF+2))
300= CALL AXIS(0.5 0..'GA?4E VALUE',1 O,13.,9.,Y(NF1),Y(N~F42))
310= DO 300 ISTAG=1,NSTAG
320= DO 200 I=1,NF
330=200 Y(I)=FATEEN(I. ISTAG, IB)
340= CALL PLOT (0.,0.,3)
350= CALL LINE (X,Y,NF.,126)
360-300 CONJTINUE
370- CALL SY,4BLC2.,15.,.5,'CAS -',5)
380- CALL SYAB4OL(2.,14.,.5,1 ABA -1',5)
390= CALL SYMBOL(2.,13.#.5v'AD -5)
400- PRINT *,IBLC
410- READ *1111I
420=400 CONTINJUE
430- CALL PLOTE(11.,0.,3)
440= END
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Appendix E

Computer Code for OPTSA

100- PROGRA4 0FMS
110= REAL AAA(12, 10), AA(12, 10), A(12, 10), SS(10, 3), PSOL(10),
120= :LsoL(l0). Rw(178), C(10), B(12)
130= v~rGE IW(40)
140- PRIr*P''BLJJERED, BAaA. RABA, BAD. RAD,BAS. RCAS'
150= READ *,BLUE, RED,aaA.RABA. BAD, RAD,BCAS,RCAS
160= PRior *,BR,RRI
170= READ *,BR, RR
180= DATA SS/3,2,2,3*1,5'0,1,0,2,1,0,3,2,1,0,0,0,1,
190= :0,1,2,0,1,2, 3/,M41/10/,.M2/0/,N/10/,IA/12/,B/12*1/,C/.1O'1/
200= ZZZ-)
210=- DO 1000 IB.1, 10
220= DO 1000 IR=1,10
230= -a~uJ--BLUE-+IAX(0., (ss(IR, 2)*RED -SS(IB,3)'BwAl J*RAW~3.)
240= BLL1244AX (BLW, BR'BW AE)
250= RED1z=REDAX (0. ,(SS (113,2) *UE -SS (IR, 3) *BI *At )WABA/3.)
260= REDlI=AX(RED1, RR*RED)
270='
280='
290=*
300='
310= CASIGS (IB, 1) 'BLE*BC/3.-SS(IR 1) 'PED*RCAS/3.
320= ZZ=0
33U- DO 100 JB=1,10
340= DO 100 JR=1,10
350= BLU2--al~u-'l(0., (SS (JR 2) *RED13.-SS (JB, 3) *Bw1*BADI3. ) RABA4)
360- BWU2=.4AX(BWL2, BR*BLU1)
370= R.ED2-RED1-M4AX(O. , (SS GJB, 2) *BU1/3. -SS(JR, 1) *RED1'RAD/3. ) *BABA)
380= RED2*1.AX(RED2, RR*RED1)
390='
400-'
410='
420='
430- CAS2-AS14SS (JB. 1) 'BLLJ1'BCAS/3. -S(JR,1) *RE)1*A/3.
440- ZMO
450- m so KB=l1 10
460- DO 50 KR-i. 10
470- CAS3-S246S (KB, 1) 'BLUJ2*BC/3. -SB(KR, 1) RED2*RCAS/3.
400- ZmII(z,CAS3)
490- A(KB.ICR)uCAS3
500-50 COT.'INUE
510- DO 70 KB-'1,10
520- MO 6. KR-i. 10

530,* A(IcB. jqR)-A(KB,MK)-z
550- A(11,KB)in
560-70 A(12, XB)-0
570- CALL ZX3LP (A, IA, B, C, ,,M1,4,2, V, PsoL, rDOL, 1w, u., lia)
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590=- PRINT *,'V.0'
600= ELS
610= AA(JB, JR)-Z+1/V

* I620= IJDIF
*630--90 ZZ=Mfl' (ZZ, A(JB, JR))

640=100 - C0INTINLIE
650= DO) 150 JB=l,10
660= DO 150 JR=1,10

9670=-150 AA(JBJR)=AA(JB,JR)-ZZ
680= CALL ZX3LP (AA, IA, B, C, N, M1,42, V, PSOL, DSOL, RW, MIlER)
690= AAA( lB.IR)-ZZ+1/Vo 700-900 ZZZ41IN'(ZZZAAA(IB,IR))
710=1000 ax'riNU
720= DO 1100 IB=1,10

0730= DO) 1100 IR-1 f10
740=1100 AAA( IB, IR)=AAA( lB.IR)-ZZz
750= CALL ZX3LP (AAA, IA, B, C, N, Ml, M2, V, PSOL, DS0L, RW, IW, IER)

*760=- GV=CZZ+1/V
A 770= PI.I~r '(2X,lOF7.5)',(PSOL(J)/V,J=1. 10)

780= PRI ~r a(2X,1F7.5)s (DSOL(J)/V,J=1,lO)
790=- PRINT
800= PRN *,'GAME VALUE = ',GV

dl()-- L D 1200 1=1,10
820= PRIT '(2X,10F7.2)', (AMCI, J)4-ZZZ,J=1, 10)
830=1 200 CONJTINUE~
840= N
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